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ABSTRACT 
The pervasive use of ambiguous keypads for mobile text entry 
necessitates examination of their performance characteristics. 
This paper presents TnToolkit – a self-contained tool to calculate 
performance measurements for ambiguous keypads. While 
TnToolkit’s focus is ambiguous keypads, it also works with 
QWERTY and on-screen keypads. By default, TnToolkit predicts 
words-per-minute performance based on a traditional Fitts’ law 
model, and calculates KSPC, the average keystrokes required to 
enter each character of text. Existing modules are extensible to 
implement custom metrics. An experiment reveals that using 
TnToolkit to gather performance metrics is 69% faster than 
existing techniques, without compromising accuracy. 

Categories and Subject Descriptors 
H.5.2 [Information interfaces and presentation]: User 
Interfaces – Evaluation/methodology. 

General Terms 
Measurement, Performance, Design, Human Factors 

Keywords 
Toolkit, text entry, performance measurement, ambiguous 
keypads, keystrokes-per-character, words-per-minute 

1. INTRODUCTION 
Unlike a QWERTY keyboard, an ambiguous keypad assigns 
multiple letters to each key. Consequently, ambiguous keypads 
use fewer than 26 keys for English text entry. Moreover, the 
keypads are smaller and reduce finger movement. However, 
assigning multiple letters to a key creates ambiguity, since a 
sequence of keystrokes can map to more than one word. In this 
case, additional keystrokes are needed to select the intended 
word. A favourable text entry technique reduces the number of 

keys, while imposing minimal overhead. The toolkit presented 
here provides a fast and accurate analysis of ambiguous keypad 
characteristics, including text entry performance in words per 
minute (WPM) and keystrokes-per-character (KSPC). 
The ubiquitous telephone keypad is an example of an ambiguous 
keypad. Even the popular Nintendo Wii video game console 
provides an on-screen telephone keypad in its Message Board 
application (Figure 1). Familiarity with the telephone keypad for 
text entry is due to the pervasive use of mobile phones for sending 
Short Message Service (SMS) messages (a.k.a. text messages). In 
2008, Americans sent more than 3.5 billion text messages per day 
[10]! Such immense use of ambiguous keypads underscores the 
importance of tools to analyse and evaluate new and exiting 
designs. 

 
Figure 1. The ambiguous keypad used in the 
Nintendo Wii’s Message Board application. 

After reviewing text entry concepts, we present our motivation for 
TnToolkit, describe its features, and compare it to related work. 
We then detail a user study comparing TnToolkit to an existing 
analysis method. 

1.1 Language-Based Disambiguation 
With ambiguous text entry, each key press maps to a small set of 
letters. Consequently, a sequence of keystrokes can map to more 
than one word. For example, on a standard telephone keypad, 
2-2-5-3 could represent “cake”, “able”, “bald”, or “calf”. This 
outcome is called a collision and requires additional input to 
select the intended word.  
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Tegic Communications (http://www.tegic.com) developed the T9 
text entry technique that combines a telephone keypad with 
language-based modelling. Words involved in a collision appear 
in decreasing order of frequency. The user traverses the sequence 
by pressing a next key. Using the previous example, entering 
“able” would involve one key press for each letter, one press of 
next to select “able” from the list, and one press of SPACE to select 
and terminate the word. 



1.2 Keystrokes-per-Character (KSPC) 
The keystroke overhead with ambiguous keypads depends on the 
text entry technique. A metric that captures this overhead is 
keystrokes-per-character (KSPC) [6]. KSPC is the average 
number of keystrokes required to enter a single character of text 
in a given language using a given interaction technique. (For 
on-screen keypads, “keystrokes” could represent stylus or finger 
taps [6].) KSPC26 accounts for letters, while KSPC27 includes 
the space character. KSPC is calculated as follows: 
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For each word in the corpus, the number of characters (CW, 
including a terminating space) and the required number of 
keystrokes (KW) are both weighted by the word’s frequency in the 
corpus (FW). A KSPC of 1 is characteristic of QWERTY keyboards. 
While a low KSPC is desirable, a value less than 1 is only 
possible using word completion or word prediction techniques. 

1.3 WPM Performance Prediction 
Fitts’ law [2] predicts the movement time (MT) to a target of 
width W at a distance (a.k.a. amplitude) A. Provided the units for 
both measures are the same, the division of A by W “cancels out” 
the units. Thus, only the distance-to-width ratio is needed. A 
movement time prediction uses W and A, and empirically defined 
coefficients a and b: 
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An upper-bound WPM prediction can be calculated using Fitts’ 
law, a language corpus in the form of a word-frequency list, the 
relative location and size of each key, and the letters assigned to 
each key [12]. For simplicity, we assume English is the intended 
language and movement time is in seconds. 
The first step is to generate a prediction of the movement time 
from one key press to the next using Fitts’ law. By summing the 
movement times to enter each character of each word, one can 
calculate the predicted time to enter each word in the corpus and, 
hence, the time to enter the entire corpus (weighted by word 
frequency). 
Modelling one-handed text entry depends solely on calculating 
MT. However, two-handed typing involves two digits (i.e., fingers 
or thumbs) working in parallel. In this case, predicting movement 
time involves considering both the time to move the same digit 
from one key the next key and the time to move the alternate digit 
from its previous position. The reader is directed to previous 
research on two-thumb text entry for further details [9]. 
Dividing the total entry time by the number of characters 
(including spaces) in the corpus yields the average time to enter a 
character (in seconds per character). Taking the reciprocal and 
multiplying by 60 / 5 yields a prediction of the average text entry 
speed in words per minute.1 This technique can apply equally to 
ambiguous, QWERTY, and on-screen keypads. 

                                                                 
1 For approximately the past 100 years, calculating text entry 

speed assumes a word length of five characters (including 
spaces) [15]. 

2. MOTIVATION 
Our work builds upon previous research [6, 9] that used 
command-line tools to calculate KSPC and WPM. 
The basic ingredient to obtain KSPC for a keypad layout is a 
corpus in the form of a word-frequency list. Each line contains a 
word and its frequency within the corpus. The keystrokes to enter 
each word are constructed based on the interaction technique of 
interest and appended to each entry in the file. Collision-resolving 
keystrokes are also included where necessary. The resulting 
word-frequency-keystroke file is used as input to the model which 
calculates KSPC by weighting the keystroke count for each word 
by its frequency. 
Calculating text entry speed (WPM) is a multi-step process. It 
involves the word-frequency-keystroke file previously detailed, 
Fitts' law coefficients, and a keypad digitization file. Each line in 
the digitization file encodes a different key on the keyboard using 
a unique identifier (e.g., a letter), the x- and y-coordinate of the 
key's location, and the target width of the key [9]. 
Gathering data for the digitization file requires an image of the 
keypad. If using existing command-line tools, a graphics 
application is also required. The image must be to-scale and the 
application must display the coordinates of the mouse pointer. 
The user opens the image within the graphics application and uses 
the mouse pointer as a probe to determine the coordinates of a 
key. The key width is similarly determined. However, the use of a 
separate graphics application is cumbersome. 
We created a self-contained tool called TnToolkit to facilitate the 
rapid evaluation and analysis of ambiguous keypads. TnToolkit 
calculates KSPC characteristics and predicts WPM performance 
modelling one- or two-handed text entry. Though our research 
focuses on physical ambiguous keypads, TnToolkit also works 
with soft keypads (i.e., on-screen or touch-screen keypads) and 
QWERTY keypads. Furthermore, it is extensible to serve as the 
framework for implementing new characteristics-based or 
performance-based metrics. 
While Tegic Communications’ T9 technology stands for “Text on 
9 keys” [13], our toolkit evaluates similar techniques that use an 
arbitrary n number of keys – hence the name TnToolkit. 

3. FEATURES AND BENEFITS 
TnToolkit’s distributable package can be downloaded from 
http://www.cse.yorku.ca/~stevenc/TnToolkit/. Upon starting the 
toolkit’s GUI interface (Figure 2), the user loads an image of the 
keypad. The user digitizes a key by dragging across its region 
within the image. 
Upon releasing the mouse button, the Key Definition dialog 
(Figure 3) facilitates letter-key mapping. The user indicates 
whether the key encodes letters, SPACE, or next. For letter keys, 
the user selects one or more letters to associate with the key. (For 
QWERTY layouts, only one letter is selected per key.) Letters 
already mapped to keys are disabled. 
Finally, the user stipulates whether one typically presses that key 
with the left thumb, right thumb, or either thumb. (The term 
“thumb” also includes using a finger on each hand or using two 
styli simultaneously.) Assigning all keys to a single thumb 
simulates one-handed input. 



 
Figure 2. TnToolkit's main screen. 

A key has been digitized and selected. 

 
Figure 3. The dialog used to map letters to keys. 

Digitized keys appear as entries in the list on the right of the main 
window. The user can delete the digitization or edit the letter-key 
mapping. The attributes of the selected key also appear. The 
values x0 and y0 represent the top left point of the key’s outline, 
and the values w and h represent its width and height, 
respectively. The key’s target width (tw) is the smaller of its width 
and height [7], and the key’s target point is its centre point, 
represented by cx and cy. This form of digitization is consistent 
with previous tools [9, 12]. 
Clicking within a key’s outline selects it. The user can then drag 
the top-left handle to move the outline, or drag the bottom-right 
handle to resize the outline. The user can change the colour of 
outlines to make them clearly visible. In addition, the user can 
undo or redo actions without limitation – a feature not always 
available in graphics applications. 
When the user has mapped all letters and functions to keys, the 
KSPC and WPM metrics can be calculated. A Parameters Dialog 
is available to specify Fitts’ law coefficients and a 
word-frequency file. Calculated metrics, ambiguous word sets 
(i.e., words associated with collisions), and 
word-frequency-keystroke data, appear in a tabbed dialog 
(Figure 4 and Figure 5). The contents of these panes can be 
copied to the clipboard for use in other programs. 

 
Figure 4. The KSPC data calculated for T9 input. 

 
Figure 5. The WPM data calculated for T9 input. 

4. RELATED WORK 
Composed of goals, operators, methods, and selection rules, the 
GOMS model [1] proposed by Card, Moran, and Newell is the 
standard for predicting human performance in interaction systems. 
However, in practice, the overhead required to produce GOMS 
models often eclipses their benefit [14]. 
Tollinger et al. use GOMS modelling in X-PRT, an environment 
to support interface design and performance evaluation [14]. In 
general, X-PRT simplifies modelling by allowing users to import 
screen images and outline interactive widgets. While X-PRT is 
applicable to a broad spectrum of interaction, TnToolkit 
specializes in text entry. Consequently, it is more straightforward 
and suitable for such tasks. 
A subset of GOMS is the Keystroke-Level-Model (KLM) [1]. 
Using KLM, completion time is predicted by decomposing a task 
into primitive operations. KLM operators are combined according 
to a set of rules. Syntagm provides a “KLM Calculator” [4] to aid 
this process. Luo and John validated KLM on mobile devices [5] 
and Holleis et al. introduced mobile interaction operators [3]. 
While these contributions can model various mobile interactions, 
TnToolkit is specifically designed for text entry analysis. 
An evaluation tool by Sandnes models text entry techniques using 
finite state automata [11]. Traversal algorithms can then evaluate 
the resulting directed graphs and calculate KSPC. However, the 
lack of spatial details precludes prediction of WPM performance. 
As an alternative to software-based tools, MacKenzie and Read 
employed paper mock-ups of keypad layouts to evaluate text 
entry performance [8]. Using their simple, low-tech approach, 
numerous user study sessions can be held simultaneously. 
Furthermore, their results were consistent with formal studies. 
However, lack of a computer results in imprecise timing and 
accuracy measurements. Combined with TnToolkit, this approach 
could quickly yield Fitts’ coefficients for the performance model 
and reveal both novice and expert performance. 
In the following section, we detail our methodology to evaluate 
the performance and accuracy of TnToolkit. 



5. METHOD 

5.1 Participants 
Twelve volunteer participants (ten male, two female) were 
recruited from the local university campus. All understood 
English proficiently. Ages ranged from 22 to 38 years (mean = 27 
years). Though all participants chose to use the mouse in their 
right hand, two participants were actually left-handed. Testing 
time for each participant was approximately thirty minutes. None 
had any previous experience with TnToolkit. 

5.2 Apparatus 
The workstation was a Pentium 4 530 (3 GHz) system running 
Windows XP. It was equipped with a 17-inch LCD monitor and a 
Logitech Internet Keyboard and Optical Mouse. The experiment 
took place in a quiet office environment. 

5.3 Procedure 
Participants were given the task of calculating KSPC and WPM 
for the keypad shown in Figure 2. To allow for comparisons with 
established results, this study employed the same model 
parameters used in previous research [12]. These parameters 
include the keypad layout, a word-frequency file, the Fitts’ law 
coefficients, and one-hand interaction. 
Each participant performed the task once with command-line 
tools and once with TnToolkit. In each case, participants were 
given a written script to guide them through each condition. 
Timing started when the participant indicated that s/he was ready 
to begin and stopped when the participant finished recording 
KSPC and WPM. 

5.3.1 Command-Line 
In this condition, participants used existing command-line 
programs [6, 9] to calculate KSPC and WPM. 
The first step was to use Microsoft Notepad to create a keypad 
digitization file. The script instructed participants to define the 
letter keys (keys 2-9), next (*), and SPACE (0). Participants used 
Microsoft Paint (and Calculator if necessary) to determine 
coordinate values. A key’s target point was its centre, and its 
target width was the smaller of its width and height [7]. 

 
Figure 6. A demonstration of the command-line programs. 

Participants executed three programs at the command-line 
(Figure 6). The first program read the word-frequency file and 
produced a word-frequency-keystrokes file. This was 
accomplished by replacing each letter in a word by the 
corresponding number on the telephone keypad. The second 
program appended disambiguating keystrokes (representing 

presses of next) in accordance with T9-like input. The third 
program yielded KSPC26 and KSPC27. 
Calculating a WPM performance prediction required the 
participants to enter the following data into a model definition 
file: the keypad digitization filename, the word-frequency-
keystrokes filename, and the text entry keys’ identifiers. This 
model definition file served as input to a program that yielded a 
WPM performance prediction. 

5.3.2 TnToolkit 
In this condition, participants launched TnToolkit and opened the 
image of the keypad. The script instructed them to define the 
letter keys (keys 2-9), next (*), and SPACE (0). The script also 
indicated how to edit a key’s parameters. After defining the 
required keys, the participants selected Calculate from the 
Metrics menu to display the KSPC measurements and WPM 
performance prediction. 

5.4 Design 
This experiment was a single factor design. The within-subjects 
factor was interface type with two levels: command-line versus 
TnToolkit (GUI). The order of factors was counterbalanced to 
offset learning effects. The two dependent variables were task 
completion time and result accuracy (percent difference). 
Accuracy was measured as the deviation between the two 
interface types in their results for KSPC and WPM. 

6. RESULTS AND DISCUSSION 
All participants appreciated the convenience of TnToolkit. Some 
believed its use would reduce the occurrence of errors and make 
errors easier to identify and correct. 

6.1 Task Completion Time 
Participant performance, as measured by task completion time, 
appears in Table 1. 

Table 1. The results for task completion time. 
(Green indicates the faster condition.) 

Task Completion Time (mm:ss) Par. Command-Line TnToolkit % Decrease 
1 24:56 06:11 75.20 
2 12:10 03:23 72.19 
3 12:50 04:38 63.90 
4 43:29 03:40 91.57 
5 17:39 05:25 69.31 
6 09:37 05:56 38.30 
7 11:57 04:25 63.04 
8 20:09 05:12 74.19 
9 13:25 04:18 67.95 

10 26:50 05:08 80.87 
11 18:09 05:25 70.16 
12 32:16 10:49 66.48 

Mean: 20:17 05:23 69.43 
SD: 09:37 01:50 12.03 

 



An analysis of variances revealed that interface type had a 
significant effect on task completion time (F1,10 = 25.88, 
p < .0005). On average, task completion time was 69% less using 
the integrated TnToolkit than using auxiliary applications with the 
command-line programs. In addition, an ANOVA confirmed that 
counterbalancing was effective with non-significant effects for 
group (F1,10 = 0.044, ns) and group by interface type 
(F1,10 = 0.013, ns). 

Because digitizing a keypad involves a graphical component, it 
might seem obvious that incorporating a GUI around existing 
command-line tools would improve user performance. However, 
this evaluation yields a quantitative, statistically significant, and 
large improvement effect. 
The lower standard deviation in the TnToolkit condition reveals 
that participant performance was more consistent with the toolkit 
than with the command-line tools. Considering that participants 
had no previous experience with the toolkit, this suggests users 
can quickly become proficient with it. 
However, regardless of experience, using the command-line tools 
requires manual calculation of a key’s centre coordinates and 
generation of various input files. In contrast, TnToolkit performs 
such operations automatically. We therefore hypothesize that 
experience would decrease task completion time in both 
conditions, but that TnToolkit would remain faster. 

6.2 Result Accuracy 
Because both the letter-key mapping and the word-frequency file 
remained the same throughout the experiment, all participants 
obtained the same KSPC measurements in both conditions. 
Unpublished statistics verify the KSPC26 value of 1.0079 and the 
KSPC27 value of 1.0064. (Published results [6] differ by less than 
0.08%, but were calculated using a slightly different 
word-frequency file.) 

Table 2. The WPM predictions and accuracy with respect 
to the established prediction of 40.6 wpm [12]. 
(Green indicates the more accurate condition.) 

Command-Line TnToolkit Par. Prediction % Difference Prediction % Difference
1 45.5 12.07 39.9 1.72 
2 41.2 1.48 40.3 0.74 
3 40.5 0.25 41.2 1.48 
4 38.6 4.93 41.6 2.46 
5 38.5 5.17 41.1 1.23 
6 41.1 1.23 40.1 1.23 
7 41.9 3.20 41.6 2.46 
8 41.2 1.48 41.6 2.46 
9 41.3 1.72 39.5 2.71 

10 40.9 0.74 39.7 2.22 
11 41.1 1.23 40.5 0.25 
12 40.8 0.49 41.1 1.23 

Mean: 41.1 2.83 40.7 1.68 
SD: 1.7 3.33 0.8 0.78 

 
Table 2 presents the WPM predictions calculated by each 
participant in each condition. It also presents the percent 

difference from the established prediction of 40.6 wpm for this 
keypad [12]. Again, statistical analysis confirms effective 
counterbalancing (F1,10 = 1.32, p = .280) and that no asymmetric 
transfer of skill occurred between the two conditions (F1,10 = 3.19, 
p = .105). 

Using the toolkit, all participants attained a prediction within 3% 
of the accepted value. Seven of twelve participants achieved the 
same or better accuracy with the TnToolkit than with the 
command-line programs. However, this difference was not 
statistically significant (F1,10 = 1.73, p = .216). While this 
indicates that the toolkit does not necessarily reveal more accurate 
results, it also suggests that using the TnToolkit is just as accurate 
as the much slower alternative. 

7. CONCLUSION AND FUTURE WORK 
With the global proliferation of mobile devices and popularity of 
text messaging, readily obtainable performance measurements are 
important for the a priori evaluation of design alternatives. 
TnToolkit rapidly and accurately analyzes the performance 
characteristics of keypads. It streamlines performing letter-key 
assignments and simplifies digitizing ambiguous keypads. 
Furthermore, it allows users to visualize and easily edit the 
keypad digitization and share data with other applications. 
The evaluation revealed the benefits of TnToolkit. Its use resulted 
in a 69% decrease in task completion time without compromising 
accuracy. 
As we continue our research on text entry metrics, TnToolkit will 
be expanded to facilitate additional performance evaluations. 
Furthermore, a longitudinal study may reveal additional toolkit 
benefits or areas for improvement. 
By conveniently facilitating the performance evaluation of 
ambiguous keypad designs, TnToolkit facilitates analyses of 
existing devices as well as new prototypes. 
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