
TnToolkit: A Design and Analysis Tool for
Ambiguous, QWERTY, and On-Screen Keypads

Steven J. Castellucci and I. Scott MacKenzie
Department of Computer Science and Engineering

York University
Toronto, Ontario M3J 1P3 Canada

{stevenc, mack}@cse.yorku.ca

ABSTRACT
The pervasive use of ambiguous keypads for mobile text entry
necessitates examination of their performance characteristics.
This paper presents TnToolkit – a self-contained tool to calculate
performance measurements for ambiguous keypads. While
TnToolkit’s focus is ambiguous keypads, it also works with
QWERTY and on-screen keypads. By default, TnToolkit predicts
words-per-minute performance based on a traditional Fitts’ law
model, and calculates KSPC, the average keystrokes required to
enter each character of text. Existing modules are extensible to
implement custom metrics. An experiment reveals that using
TnToolkit to gather performance metrics is 69% faster than
existing techniques, without compromising accuracy.

Categories and Subject Descriptors
H.5.2 [Information interfaces and presentation]: User
Interfaces – Evaluation/methodology.

General Terms
Measurement, Performance, Design, Human Factors

Keywords
Toolkit, text entry, performance measurement, ambiguous
keypads, keystrokes-per-character, words-per-minute

1. INTRODUCTION
Unlike a QWERTY keyboard, an ambiguous keypad assigns
multiple letters to each key. Consequently, ambiguous keypads
use fewer than 26 keys for English text entry. Moreover, the
keypads are smaller and reduce finger movement. However,
assigning multiple letters to a key creates ambiguity, since a
sequence of keystrokes can map to more than one word. In this
case, additional keystrokes are needed to select the intended
word. A favourable text entry technique reduces the number of

keys, while imposing minimal overhead. The toolkit presented
here provides a fast and accurate analysis of ambiguous keypad
characteristics, including text entry performance in words per
minute (WPM) and keystrokes-per-character (KSPC).
The ubiquitous telephone keypad is an example of an ambiguous
keypad. Even the popular Nintendo Wii video game console
provides an on-screen telephone keypad in its Message Board
application (Figure 1). Familiarity with the telephone keypad for
text entry is due to the pervasive use of mobile phones for sending
Short Message Service (SMS) messages (a.k.a. text messages). In
2008, Americans sent more than 3.5 billion text messages per day
[10]! Such immense use of ambiguous keypads underscores the
importance of tools to analyse and evaluate new and exiting
designs.

Figure 1. The ambiguous keypad used in the
Nintendo Wii’s Message Board application.

After reviewing text entry concepts, we present our motivation for
TnToolkit, describe its features, and compare it to related work.
We then detail a user study comparing TnToolkit to an existing
analysis method.

1.1 Language-Based Disambiguation
With ambiguous text entry, each key press maps to a small set of
letters. Consequently, a sequence of keystrokes can map to more
than one word. For example, on a standard telephone keypad,
2-2-5-3 could represent “cake”, “able”, “bald”, or “calf”. This
outcome is called a collision and requires additional input to
select the intended word.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EICS’09, July15–17, 2009, Pittsburg, Pennsylvania, USA.
Copyright 2009 ACM 978-1-60558-600-7/09/07...$5.00.

Tegic Communications (http://www.tegic.com) developed the T9
text entry technique that combines a telephone keypad with
language-based modelling. Words involved in a collision appear
in decreasing order of frequency. The user traverses the sequence
by pressing a next key. Using the previous example, entering
“able” would involve one key press for each letter, one press of
next to select “able” from the list, and one press of SPACE to select
and terminate the word.

1.2 Keystrokes-per-Character (KSPC)
The keystroke overhead with ambiguous keypads depends on the
text entry technique. A metric that captures this overhead is
keystrokes-per-character (KSPC) [6]. KSPC is the average
number of keystrokes required to enter a single character of text
in a given language using a given interaction technique. (For
on-screen keypads, “keystrokes” could represent stylus or finger
taps [6].) KSPC26 accounts for letters, while KSPC27 includes
the space character. KSPC is calculated as follows:

()
()∑

∑
×
×

=
WW

WW
FC
FK

KSPC

For each word in the corpus, the number of characters (CW,
including a terminating space) and the required number of
keystrokes (KW) are both weighted by the word’s frequency in the
corpus (FW). A KSPC of 1 is characteristic of QWERTY keyboards.
While a low KSPC is desirable, a value less than 1 is only
possible using word completion or word prediction techniques.

1.3 WPM Performance Prediction
Fitts’ law [2] predicts the movement time (MT) to a target of
width W at a distance (a.k.a. amplitude) A. Provided the units for
both measures are the same, the division of A by W “cancels out”
the units. Thus, only the distance-to-width ratio is needed. A
movement time prediction uses W and A, and empirically defined
coefficients a and b:

⎟
⎠
⎞

⎜
⎝
⎛ +×+= 1log2 W

AbaMT

An upper-bound WPM prediction can be calculated using Fitts’
law, a language corpus in the form of a word-frequency list, the
relative location and size of each key, and the letters assigned to
each key [12]. For simplicity, we assume English is the intended
language and movement time is in seconds.
The first step is to generate a prediction of the movement time
from one key press to the next using Fitts’ law. By summing the
movement times to enter each character of each word, one can
calculate the predicted time to enter each word in the corpus and,
hence, the time to enter the entire corpus (weighted by word
frequency).
Modelling one-handed text entry depends solely on calculating
MT. However, two-handed typing involves two digits (i.e., fingers
or thumbs) working in parallel. In this case, predicting movement
time involves considering both the time to move the same digit
from one key the next key and the time to move the alternate digit
from its previous position. The reader is directed to previous
research on two-thumb text entry for further details [9].
Dividing the total entry time by the number of characters
(including spaces) in the corpus yields the average time to enter a
character (in seconds per character). Taking the reciprocal and
multiplying by 60 / 5 yields a prediction of the average text entry
speed in words per minute.1 This technique can apply equally to
ambiguous, QWERTY, and on-screen keypads.

1 For approximately the past 100 years, calculating text entry

speed assumes a word length of five characters (including
spaces) [15].

2. MOTIVATION
Our work builds upon previous research [6, 9] that used
command-line tools to calculate KSPC and WPM.
The basic ingredient to obtain KSPC for a keypad layout is a
corpus in the form of a word-frequency list. Each line contains a
word and its frequency within the corpus. The keystrokes to enter
each word are constructed based on the interaction technique of
interest and appended to each entry in the file. Collision-resolving
keystrokes are also included where necessary. The resulting
word-frequency-keystroke file is used as input to the model which
calculates KSPC by weighting the keystroke count for each word
by its frequency.
Calculating text entry speed (WPM) is a multi-step process. It
involves the word-frequency-keystroke file previously detailed,
Fitts' law coefficients, and a keypad digitization file. Each line in
the digitization file encodes a different key on the keyboard using
a unique identifier (e.g., a letter), the x- and y-coordinate of the
key's location, and the target width of the key [9].
Gathering data for the digitization file requires an image of the
keypad. If using existing command-line tools, a graphics
application is also required. The image must be to-scale and the
application must display the coordinates of the mouse pointer.
The user opens the image within the graphics application and uses
the mouse pointer as a probe to determine the coordinates of a
key. The key width is similarly determined. However, the use of a
separate graphics application is cumbersome.
We created a self-contained tool called TnToolkit to facilitate the
rapid evaluation and analysis of ambiguous keypads. TnToolkit
calculates KSPC characteristics and predicts WPM performance
modelling one- or two-handed text entry. Though our research
focuses on physical ambiguous keypads, TnToolkit also works
with soft keypads (i.e., on-screen or touch-screen keypads) and
QWERTY keypads. Furthermore, it is extensible to serve as the
framework for implementing new characteristics-based or
performance-based metrics.
While Tegic Communications’ T9 technology stands for “Text on
9 keys” [13], our toolkit evaluates similar techniques that use an
arbitrary n number of keys – hence the name TnToolkit.

3. FEATURES AND BENEFITS
TnToolkit’s distributable package can be downloaded from
http://www.cse.yorku.ca/~stevenc/TnToolkit/. Upon starting the
toolkit’s GUI interface (Figure 2), the user loads an image of the
keypad. The user digitizes a key by dragging across its region
within the image.
Upon releasing the mouse button, the Key Definition dialog
(Figure 3) facilitates letter-key mapping. The user indicates
whether the key encodes letters, SPACE, or next. For letter keys,
the user selects one or more letters to associate with the key. (For
QWERTY layouts, only one letter is selected per key.) Letters
already mapped to keys are disabled.
Finally, the user stipulates whether one typically presses that key
with the left thumb, right thumb, or either thumb. (The term
“thumb” also includes using a finger on each hand or using two
styli simultaneously.) Assigning all keys to a single thumb
simulates one-handed input.

Figure 2. TnToolkit's main screen.

A key has been digitized and selected.

Figure 3. The dialog used to map letters to keys.

Digitized keys appear as entries in the list on the right of the main
window. The user can delete the digitization or edit the letter-key
mapping. The attributes of the selected key also appear. The
values x0 and y0 represent the top left point of the key’s outline,
and the values w and h represent its width and height,
respectively. The key’s target width (tw) is the smaller of its width
and height [7], and the key’s target point is its centre point,
represented by cx and cy. This form of digitization is consistent
with previous tools [9, 12].
Clicking within a key’s outline selects it. The user can then drag
the top-left handle to move the outline, or drag the bottom-right
handle to resize the outline. The user can change the colour of
outlines to make them clearly visible. In addition, the user can
undo or redo actions without limitation – a feature not always
available in graphics applications.
When the user has mapped all letters and functions to keys, the
KSPC and WPM metrics can be calculated. A Parameters Dialog
is available to specify Fitts’ law coefficients and a
word-frequency file. Calculated metrics, ambiguous word sets
(i.e., words associated with collisions), and
word-frequency-keystroke data, appear in a tabbed dialog
(Figure 4 and Figure 5). The contents of these panes can be
copied to the clipboard for use in other programs.

Figure 4. The KSPC data calculated for T9 input.

Figure 5. The WPM data calculated for T9 input.

4. RELATED WORK
Composed of goals, operators, methods, and selection rules, the
GOMS model [1] proposed by Card, Moran, and Newell is the
standard for predicting human performance in interaction systems.
However, in practice, the overhead required to produce GOMS
models often eclipses their benefit [14].
Tollinger et al. use GOMS modelling in X-PRT, an environment
to support interface design and performance evaluation [14]. In
general, X-PRT simplifies modelling by allowing users to import
screen images and outline interactive widgets. While X-PRT is
applicable to a broad spectrum of interaction, TnToolkit
specializes in text entry. Consequently, it is more straightforward
and suitable for such tasks.
A subset of GOMS is the Keystroke-Level-Model (KLM) [1].
Using KLM, completion time is predicted by decomposing a task
into primitive operations. KLM operators are combined according
to a set of rules. Syntagm provides a “KLM Calculator” [4] to aid
this process. Luo and John validated KLM on mobile devices [5]
and Holleis et al. introduced mobile interaction operators [3].
While these contributions can model various mobile interactions,
TnToolkit is specifically designed for text entry analysis.
An evaluation tool by Sandnes models text entry techniques using
finite state automata [11]. Traversal algorithms can then evaluate
the resulting directed graphs and calculate KSPC. However, the
lack of spatial details precludes prediction of WPM performance.
As an alternative to software-based tools, MacKenzie and Read
employed paper mock-ups of keypad layouts to evaluate text
entry performance [8]. Using their simple, low-tech approach,
numerous user study sessions can be held simultaneously.
Furthermore, their results were consistent with formal studies.
However, lack of a computer results in imprecise timing and
accuracy measurements. Combined with TnToolkit, this approach
could quickly yield Fitts’ coefficients for the performance model
and reveal both novice and expert performance.
In the following section, we detail our methodology to evaluate
the performance and accuracy of TnToolkit.

5. METHOD

5.1 Participants
Twelve volunteer participants (ten male, two female) were
recruited from the local university campus. All understood
English proficiently. Ages ranged from 22 to 38 years (mean = 27
years). Though all participants chose to use the mouse in their
right hand, two participants were actually left-handed. Testing
time for each participant was approximately thirty minutes. None
had any previous experience with TnToolkit.

5.2 Apparatus
The workstation was a Pentium 4 530 (3 GHz) system running
Windows XP. It was equipped with a 17-inch LCD monitor and a
Logitech Internet Keyboard and Optical Mouse. The experiment
took place in a quiet office environment.

5.3 Procedure
Participants were given the task of calculating KSPC and WPM
for the keypad shown in Figure 2. To allow for comparisons with
established results, this study employed the same model
parameters used in previous research [12]. These parameters
include the keypad layout, a word-frequency file, the Fitts’ law
coefficients, and one-hand interaction.
Each participant performed the task once with command-line
tools and once with TnToolkit. In each case, participants were
given a written script to guide them through each condition.
Timing started when the participant indicated that s/he was ready
to begin and stopped when the participant finished recording
KSPC and WPM.

5.3.1 Command-Line
In this condition, participants used existing command-line
programs [6, 9] to calculate KSPC and WPM.
The first step was to use Microsoft Notepad to create a keypad
digitization file. The script instructed participants to define the
letter keys (keys 2-9), next (*), and SPACE (0). Participants used
Microsoft Paint (and Calculator if necessary) to determine
coordinate values. A key’s target point was its centre, and its
target width was the smaller of its width and height [7].

Figure 6. A demonstration of the command-line programs.

Participants executed three programs at the command-line
(Figure 6). The first program read the word-frequency file and
produced a word-frequency-keystrokes file. This was
accomplished by replacing each letter in a word by the
corresponding number on the telephone keypad. The second
program appended disambiguating keystrokes (representing

presses of next) in accordance with T9-like input. The third
program yielded KSPC26 and KSPC27.
Calculating a WPM performance prediction required the
participants to enter the following data into a model definition
file: the keypad digitization filename, the word-frequency-
keystrokes filename, and the text entry keys’ identifiers. This
model definition file served as input to a program that yielded a
WPM performance prediction.

5.3.2 TnToolkit
In this condition, participants launched TnToolkit and opened the
image of the keypad. The script instructed them to define the
letter keys (keys 2-9), next (*), and SPACE (0). The script also
indicated how to edit a key’s parameters. After defining the
required keys, the participants selected Calculate from the
Metrics menu to display the KSPC measurements and WPM
performance prediction.

5.4 Design
This experiment was a single factor design. The within-subjects
factor was interface type with two levels: command-line versus
TnToolkit (GUI). The order of factors was counterbalanced to
offset learning effects. The two dependent variables were task
completion time and result accuracy (percent difference).
Accuracy was measured as the deviation between the two
interface types in their results for KSPC and WPM.

6. RESULTS AND DISCUSSION
All participants appreciated the convenience of TnToolkit. Some
believed its use would reduce the occurrence of errors and make
errors easier to identify and correct.

6.1 Task Completion Time
Participant performance, as measured by task completion time,
appears in Table 1.

Table 1. The results for task completion time.
(Green indicates the faster condition.)

Task Completion Time (mm:ss) Par. Command-Line TnToolkit % Decrease
1 24:56 06:11 75.20
2 12:10 03:23 72.19
3 12:50 04:38 63.90
4 43:29 03:40 91.57
5 17:39 05:25 69.31
6 09:37 05:56 38.30
7 11:57 04:25 63.04
8 20:09 05:12 74.19
9 13:25 04:18 67.95

10 26:50 05:08 80.87
11 18:09 05:25 70.16
12 32:16 10:49 66.48

Mean: 20:17 05:23 69.43
SD: 09:37 01:50 12.03

An analysis of variances revealed that interface type had a
significant effect on task completion time (F1,10 = 25.88,
p < .0005). On average, task completion time was 69% less using
the integrated TnToolkit than using auxiliary applications with the
command-line programs. In addition, an ANOVA confirmed that
counterbalancing was effective with non-significant effects for
group (F1,10 = 0.044, ns) and group by interface type
(F1,10 = 0.013, ns).

Because digitizing a keypad involves a graphical component, it
might seem obvious that incorporating a GUI around existing
command-line tools would improve user performance. However,
this evaluation yields a quantitative, statistically significant, and
large improvement effect.
The lower standard deviation in the TnToolkit condition reveals
that participant performance was more consistent with the toolkit
than with the command-line tools. Considering that participants
had no previous experience with the toolkit, this suggests users
can quickly become proficient with it.
However, regardless of experience, using the command-line tools
requires manual calculation of a key’s centre coordinates and
generation of various input files. In contrast, TnToolkit performs
such operations automatically. We therefore hypothesize that
experience would decrease task completion time in both
conditions, but that TnToolkit would remain faster.

6.2 Result Accuracy
Because both the letter-key mapping and the word-frequency file
remained the same throughout the experiment, all participants
obtained the same KSPC measurements in both conditions.
Unpublished statistics verify the KSPC26 value of 1.0079 and the
KSPC27 value of 1.0064. (Published results [6] differ by less than
0.08%, but were calculated using a slightly different
word-frequency file.)

Table 2. The WPM predictions and accuracy with respect
to the established prediction of 40.6 wpm [12].
(Green indicates the more accurate condition.)

Command-Line TnToolkit Par. Prediction % Difference Prediction % Difference
1 45.5 12.07 39.9 1.72
2 41.2 1.48 40.3 0.74
3 40.5 0.25 41.2 1.48
4 38.6 4.93 41.6 2.46
5 38.5 5.17 41.1 1.23
6 41.1 1.23 40.1 1.23
7 41.9 3.20 41.6 2.46
8 41.2 1.48 41.6 2.46
9 41.3 1.72 39.5 2.71

10 40.9 0.74 39.7 2.22
11 41.1 1.23 40.5 0.25
12 40.8 0.49 41.1 1.23

Mean: 41.1 2.83 40.7 1.68
SD: 1.7 3.33 0.8 0.78

Table 2 presents the WPM predictions calculated by each
participant in each condition. It also presents the percent

difference from the established prediction of 40.6 wpm for this
keypad [12]. Again, statistical analysis confirms effective
counterbalancing (F1,10 = 1.32, p = .280) and that no asymmetric
transfer of skill occurred between the two conditions (F1,10 = 3.19,
p = .105).

Using the toolkit, all participants attained a prediction within 3%
of the accepted value. Seven of twelve participants achieved the
same or better accuracy with the TnToolkit than with the
command-line programs. However, this difference was not
statistically significant (F1,10 = 1.73, p = .216). While this
indicates that the toolkit does not necessarily reveal more accurate
results, it also suggests that using the TnToolkit is just as accurate
as the much slower alternative.

7. CONCLUSION AND FUTURE WORK
With the global proliferation of mobile devices and popularity of
text messaging, readily obtainable performance measurements are
important for the a priori evaluation of design alternatives.
TnToolkit rapidly and accurately analyzes the performance
characteristics of keypads. It streamlines performing letter-key
assignments and simplifies digitizing ambiguous keypads.
Furthermore, it allows users to visualize and easily edit the
keypad digitization and share data with other applications.
The evaluation revealed the benefits of TnToolkit. Its use resulted
in a 69% decrease in task completion time without compromising
accuracy.
As we continue our research on text entry metrics, TnToolkit will
be expanded to facilitate additional performance evaluations.
Furthermore, a longitudinal study may reveal additional toolkit
benefits or areas for improvement.
By conveniently facilitating the performance evaluation of
ambiguous keypad designs, TnToolkit facilitates analyses of
existing devices as well as new prototypes.

8. ACKNOWLEDGMENTS
We wish to thank the EICS reviewers for their constructive
feedback. This research was funded by the Natural Sciences and
Engineering Research Council of Canada.

9. REFERENCES
[1] Card, S. K., Moran, T. P., and Newell, A., The Psychology of

Human-Computer Interaction. Hillsdale, NJ: Erlbaum, 1983.
[2] Fitts, P. M., The information capacity of the human motor

system in controlling the amplitude of movement, Journal of
Experimental Psychology, 47, 1954, 381-391.

[3] Holleis, P., Otto, F., Hussmann, H., and Schmidt, A.,
Keystroke-level model for advanced mobile phone
interaction, Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, New York: ACM
(2007), 1505-1514.

[4] Hudson, W., Keystroke Level Model Calculator. (Accessed
on April 10, 2009.)
http://www.syntagm.co.uk/design/klmcalc.shtml.

[5] Luo, L. and John, B. E., Predicting task execution time on
handheld devices using the keystroke-level model.
Proceedings of Extended Abstracts on Human Factors in
Computing Systems, New York: ACM (2005), 1605-1608.

[6] MacKenzie, I. S., KSPC (keystrokes per character) as a
characteristic of text entry techniques, Proceedings of the 4th
International Symposium on Mobile Human-Computer
Interaction, Berlin: Springer-Verlag (2002), 195-210.

[7] MacKenzie, I. S. and Buxton, W., Extending Fitts' law to
two-dimensional tasks, Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, New
York: ACM (1992), 219-226.

[8] MacKenzie, I. S. and Read, J. C., Using paper mockups for
evaluating soft keyboard layouts, Proceedings of CASCON
2007. Toronto: IBM Canada Ltd., (2007), 98-108.

[9] MacKenzie, I. S. and Soukoreff, R. W., A model of two-
thumb text entry, Proceedings of Graphics Interface 2002,
Toronto: Canadian Information Processing Society (2002),
117-124.

[10] Roche, R., CTIA Semi-Annual Wireless Industry Survey,
CTIA The Wireless Association. (Accessed on April 1,
2009.) www.ctia.org/media/press/body.cfm/prid/1811.

[11] Sandnes, F. E., Evaluating mobile text entry strategies with
finite state automata, Proceedings of the 7th International
Conference on Human-Computer Interaction with Mobile
Devices & Services, New York: ACM (2005), 115-121.

[12] Silfverberg, M., MacKenzie, I. S., and Korhonen, P.,
Predicting text entry speed on mobile phones, Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems, New York: ACM (2000), 9-16.

[13] T9, T9 Text Input Home Page. (Accessed on April 10, 2009.)
http://www.t9.com/us/learn/.

[14] Tollinger, I., Lewis, R. L., McCurdy, M., Tollinger, P., Vera,
A., Howes, A., and Pelton, L., Supporting efficient
development of cognitive models at multiple skill levels:
Exploring recent advances in constraint-based modeling,
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, New York: ACM (2005), 411-420.

[15] Yamada, H., A historical study of typewriters and typing
methods: from the position of planning Japanese parallels,
Journal of Information Processing, 2, 1980, 175-202.

	1. INTRODUCTION
	1.1 Language Based Disambiguation
	1.2 Keystrokes-per Character (KSPC)
	1.3 WPM Performance Prediction

	2. MOTIVATION
	3. FEATURES AND BENEFITS
	4. RELATED WORK
	5. METHOD
	5.1 Participants
	5.2 Apparatus
	5.3 Procedure
	5.3.1 Command-Line
	5.3.2 TnToolkit

	5.4 Design

	6. RESULTS AND DISCUSSION
	6.1 Task Completion Time
	6.2 Result Accuracy

	7. CONCLUSION AND FUTURE WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

