

Reducing Visual Demand for Gestural
Text Input on Touchscreen Devices

Abstract
We developed a text entry method for touchscreen
devices using a Graffiti-like alphabet combined with
automatic error correction. The method is novel in that
the user does not receive the results of the recognition
process, except at the end of a phrase. The method is
justified over soft keyboards in terms of a Frame Model
of Visual Attention, which reveals both the presence
and advantage of reduced visual attention. With less
on-going feedback to monitor, there is a tendency for
the user to enter gestures more quickly. Preliminary
testing reveals reasonably quick text entry speeds (>20
wpm) with low errors rates (<5%).

Keywords
Text entry; gestural input; Graffiti; unistrokes;
automatic error correction; visual attention

ACM Classification
H.5.2. [Information Interfaces and Presentation]:
User Interfaces - Input devices and strategies (e.g.,
mouse, touchscreen)

General Terms
Human factors, Performance, Measurement

Copyright is held by the author/owner(s).

CHI'12, May 5–10, 2012, Austin, Texas, USA.

ACM 978-1-4503-1016-1/12/05.

I. Scott MacKenzie

Dept. of Computer Science and Engineering

York University

4700 Keele Street

Toronto ON M3J 1P3 Canada

mack@cse.yorku.ca

Steven J. Castellucci

Dept. of Computer Science and Engineering

York University

4700 Keele Street

Toronto ON M3J 1P3 Canada

stevenc@cse.yorku.ca

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2585

Introduction
The recent proliferation of touchscreen mobile devices
has generated considerable interest in gestural input
via the fingers. Flicking, pinching, tapping and other
gestures are now common in the repertoire of users’
actions on these devices. Generally, such gestures
serve to control the interface, typically by moving,
sizing, or selecting a view or on-screen object. Another
use of gestural input is text entry, where gestures
produce textual symbols, such as letters, digits, or
punctuation, or commands such as BACKSPACE, ENTER,
or SHIFT.

This paper focuses on gestural input for text entry. We
are interested in the distinct challenges presented by
touchscreen devices as alternatives to devices with
physical keyboards. Physical keyboards engage the
user’s tactile sense, providing critical information as
fingers feel, engage, and press. The interaction is well
known: Keys resist, then give way, and embark on
their downward journey, dutifully informing the user
that the intended keypress is complete. No similar
experience exists with soft keys rendered on a
touchscreen. And so, alternate sensory channels are
engaged, typically visual, auditory, or both.

Touchscreens and Visual Attention
Besides the tactile sense, devices with physical
keyboards create, through kinesthesia and
proprioception, a sense of space and location. Users
feel the tops and edges of keys, and groups of keys,
and develop a sense of where their fingers are and the
direction and distance to move to engage other keys.
Again, no such experience exists for a soft keyboard on
a touchscreen display. And there is little that visual or
auditory feedback can offer to help. Users must look at

the display to locate a destination key, then move the
finger toward the key to select it. Visual attention is
essential. This point has an interesting implication:
Touchscreen mobile devices are, arguably, less mobile
than their tactile counterparts. Mobility implies “on the
move” and often multi-tasking. The added visual
demand touchscreen devices impose on the user makes
them less mobile in the sense that users are visually
bound to the device while using it and, therefore, are
less mobile.

In this paper we present a gestural text entry method
that reduces the visual demand on users. The starting
point is the Unistrokes handwriting recognition method
[2], implemented using the Graffiti gesture set. Our
approach is novel in that feedback about the on-going
recognition process is not provided to the user, except
at the end of a phrase. The rationale for this is
explained below. We begin with a descriptive model for
visual attention in terms of the frames of reference
required for different types of interaction.

Frame Model of Visual Attention
There is more to visual attention than simply needing it
or not needing it. There is a scale along which the
required level of visual attention varies. To illustrate,
we present a Frame Model of Visual Attention. See
Figure 1. Four levels are shown, but the model could
be re-cast with different granularity depending on the
interactions of interest. The intent is to show a
progression in the amount of visual attention required
for different classes of interaction tasks. High demand
tasks are at one end, low demand tasks at the other.
By “demand”, we refer to the amount or precision in
visual attention, not to the difficulty of the task.

Figure 1. Frame model of visual

attention. Progressing from bottom to

top, increasing levels of visual attention

are required.

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2586

The point frame, at the top, requires the greatest
demand in visual attention. Interactions in the point
frame demand a high degree of accuracy and,
consequently, require sharp central vision (aka foveal
vision). The demand on visual attention is high.
Examples in computing are tasks such as selecting a
thin line or very small target, such as a pixel.

The target frame appears below the point frame in
Figure 1. Interactions here involve selecting targets
such as icons, toolbar buttons, or keys on a soft
keyboard. Visual attention involving foveal vision is still
needed, but with less demand than in the point frame.
The targets are larger and, hence, slightly less precision
and attention are needed.

The surface frame in Figure 1 applies to flicks, pinches,
and most forms of gestural input on touchscreen
devices. The user only needs to have a general spatial
sense of the surface on which gestures are made. The
visual demand is minimal; peripheral vision is
sufficient.

The environment frame, at the bottom in Figure 1,
includes the user’s surroundings. Here, the frame of
reference encompasses the user, the device, and the
environment. Visual attention is not simply between
user and device but with respect also to the user’s
surroundings. In most cases, the demand is low, and
requires only peripheral vision. Some interactions
involving a device’s accelerometer or camera apply to
the environment frame. Virtual environments may also
apply here, depending on the task.

The frame model of visual attention offers insight into
the problem of text entry on touchscreen devices, as
explained the next section.

Reduced Feedback (= Reduced Visual Demand)
The underlying philosophy of Unistrokes or Graffiti is
that each symbol is generated by a single gesture.
Figure 2a illustrates. A gesture begins on touch and
ends on lift. Graffiti gestures are spatially independent;
thus, they may occur on top of one another or
anywhere on the available surface. Although gestures
fall within the surface frame of reference, as noted
above, this is not necessarily true for gestures used for
text entry. This is explained below.

A Graffiti gesture ends on finger lift. A recognition
algorithm computes a set of features for the gesture
based on the digitized sample points. The features are
compared to features in a database and a symbol is
produced as output. Hopefully, the result is correct.
But, if the gesture was ill formed or incorrect in any
way, the symbol may be wrong and may require a
corrective action. This is shown in the last three steps
in Figure 2a. The user visually inspects the recognized
symbol and decides if the result is correct. If so, the
next symbol may be entered. If not, BACKSPACE is
entered to erase the errant symbol. Of course,
entering BACKSPACE amounts to another full pass
through the flowchart and does not contribute to the
user’s intended text.

With respect to the frame model of visual attention, the
first three steps in Figure 2a fall within the surface
frame. The last three fall within the target frame since
the user’s visual attention is on the small region of the
display showing the recognizer output.

(a)

(b)

Figure 2. Gestural input (a) with

inspection after each gesture (b) without

inspection.

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2587

Figure 2b shows the same entry process, except the
last three steps are omitted. Clearly there is less visual
demand since the entire process falls within the surface
frame. The result will be faster since there are fewer
steps.

One final point: The decision box in Figure 2a is a two-
choice reaction-time task and will take on the order of
250 ms [9, p. 62]. Thus, visual inspection adds about
250 ms to the time for each gesture. As a simple
illustration of the effect, consider text entry at 24 words
per minute. This is equivalent to 24 × 5 = 120
characters per minute or 2 characters per second or 1
character every 500 ms. Adding 250 ms to this yields
an entry speed of 1 / (750/60000 × 5) = 16 words per
minute. That’s of 33% slower! Thus, the increased
visual demand in monitoring the on-going recognition
process comes a substantial performance cost.

Although users can choose any strategy they like (e.g.,
not looking at the display), our experience with text
entry systems using gesture recognition (and, as well,
word prediction) is that users generally choose to
monitor the on-going recognition process. An idea we
are pursuing in this research is to take this choice away
— remove or hide the gesture-by-gesture feedback that
users monitor during input. With this feedback
removed, users should proceed more expeditiously
since (a) there is no reaction-time task at the end of
each gesture and (b) the interaction is fully in the
surface frame. Of course, users inspect the results of
gesture recognition for a reason – to observe if an error
occurred. So, an additional idea we are pursuing is to

handle recognition errors using automatic error
correction. Users only see the result of their gestures
at the end of a phrase. Hopefully, the result is
satisfactory. Our automatic error correction algorithm
is described next.

Automatic Error Correction
Automatic error correction is not new. At a simplistic
level, the auto-correct feature on word processors
qualifies: Type adn and the system converts to and.
Specific algorithms have also been proposed and
tested. Clawson et al. [1] developed Automatic
Whiteout++ for mobile phones. Their system corrects
common errors during entry, such as hitting a
neighboring key, character substitution, or
transposition (the instead of teh). When tested on data
from a mini-QWERTY experiment, the system corrected
32% of the errors automatically.

Kristensson and Zhai proposed an error correction
technique using spatial pattern matching [3]. For
example, entering the on a QWERTY keyboard forms a
spatial pattern. If the user enters rgw, it is converted
to the because the patterns are geometrically similar
(and rgw is not in the dictionary). Pattern recognition
was performed at the word level, when SPACE was
entered. Overall, their system had a success rate of
83%.

Our automatic error correction method is intended for
gesture input, so keyboard geometry is not a
consideration. The algorithm works as follows.

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2588

The incoming stream of gestures is processed as a
series of inputted words (SPACE-delimited gestures).
Each gesture in a word is deemed correct, incorrect (for
a variety of reasons), or unrecognized. Unrecognized
gestures remain in the inputted word as placeholders
(“#”). This is important: For an unrecognized gesture,
a character is intended, but the actual character is
unknown. The inputted word is looked up in a
dictionary containing words and their frequencies from
a corpus. If the word is in the dictionary, it is left as-is.
If the word is not in the dictionary, then the algorithm
tries to correct the word as follows. The minimum
string distance (MSD) [7] is computed between the
inputted word (which is not in the dictionary) and all
words in the dictionary. Three lists are produced:
words with MSD = 1, MSD = 2, and MSD = 3. Each list
is ordered by decreasing frequency. The three lists are
concatenated. Then, all words of the same size as the
inputted word are removed and put at the front of the
list (again, ordered by decreasing frequency). The
word at the front of the new list is selected to replace
the inputted word. Note that depending on the word
and the errors, the lists may be large, small, or empty.
If all lists are empty, the inputted word is left as-is.

The dictionary used for testing is based on the British
National Corpus and contains about 10,000 words [6].

The algorithm described above is similar to the
automatic error correction algorithm described by
Tinwala and MacKenzie [8]. There are a few
differences, however. Their system provided “click”
auditory feedback following each stroke and also spoke
words through a text-to-speech service as each word
was entered. Our system provides no on-going
feedback (except for the digital ink tracking the finger

path). Furthermore, as described below, our
implementation defers feedback to the end of a phrase,
rather than providing word-by-word feedback. The
rationale for this is twofold: (a) to avoid the timely
reaction-time task that occurs when recognizer results
are inspected and (b) to reduce visual demand by
limiting input to the surface frame.

Although the algorithm above is simple, its utility in use
remains to be tested. Our initial testing is explained in
the next section.

Initial Test
In-house Graffiti recognition software was integrated
into a test program written in Java. The software was
tailored to run on a Samsung Galaxy Tab 10.1 running
Android 3.1. See Figure 3. The interface presents
phrases for input selected at random from a set of 500
phrases [5]. See Figure 4. User input is seen in
Figure 5. Gesture recognition is not revealed to the
user until the END button is tapped at the end of a
phrase, whereupon a popup results dialog appears.
See Figure 6. The example shows an entry speed of
21.4 wpm with an error rate of 12.0% in the (raw)
transcribed text. The corrected text has an error rate
of 0%. It appears three errors were committed: two
strokes were unrecognized, one was misrecognized. All
three errors were corrected by the algorithm. Of
course the algorithm doesn’t work as well in all cases.

As a further test, a user experienced with Graffiti
entered 25 consecutive phrases with the test software.
The mean entry speed was 21.7 wpm. The mean error
rate in the transcribed text was 12.8% (min = 0%,
max = 25.0%). For the corrected text, the mean error
rate was 4.3% (min = 0%, max = 21.9%). See

Figure 3. Samsung Galaxy Tab 10.1

running Android 3.1.

Figure 4. Experiment software.

Figure 5. Gestural input with the

experiment software.

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2589

Figure 7. Clearly, the automatic error correction
algorithm worked quite well overall, fully correcting 12
of 24 phrases containing errors. The few cases were
the algorithm did not do so well occurred where the
SPACE stroke was misrecognized; this caused two words
to be interpreted as one.

Figure 7. Transcribed and corrected error rates (%)

for 25 consecutive phrases of entry.

Some examples of errant and corrected words are
i#reeular irregular, sa# say, yu#ta quota,
custdo# customs, t##k took, tod too, tog#ther

 together.

One frequently-cited complaint about soft keyboards is
that they consume screen space and obscure the
underlying GUI [4]. This is unavoidable. Gestural text
entry, as presented here, operates in the surface frame
of reference. There is less visual demand. Although
not implemented in our prototype software, the
gestural input surface may be translucent, covering the
entire display but without obscuring the underlying
GUI. This will be the subject of further work.

References
[1] Clawson, J., Lyons, K., Rudnick, A., Iannucci, R. A.,

and Starner, T., Automatic Whiteout++: Correcting

mini-QWERTY typing errors using keypress timing,
Proc CHI 2008, (New York: ACM, 2008), 573-582.

[2] Goldberg, D. and Richardson, C., Touch-typing with a
stylus, Proc INTERCHI '93, (New York: ACM, 1993),
80-87.

[3] Kristensson, P.-O. and Zhai, S., Relaxing stylus typing
precision by geometric pattern matching, Proc CHI
2005, (New York: ACM, 2005), 151-158.

[4] Li, F. C. Y., Guy, R. T., Yatani, K., and Truong, K. N.,
The 1Line keyboard: A QWERTY layout in a single line,
Proc UIST 2011, (New York: ACM, 2011), 461-470.

[5] MacKenzie, I. S. and Soukoreff, R. W., Phrase sets for
evaluating text entry techniques, Ext Abs CHI 2003,
(New York: ACM, 2003), 754-755.

[6] Silfverberg, M., MacKenzie, I. S., and Korhonen, P.,
Predicting text entry speed on mobile phones, Proc
CHI 2000, (New York: ACM, 2000), 9-16.

[7] Soukoreff, R. W. and MacKenzie, I. S., Measuring
errors in text entry tasks: An application of the
Levenshtein string distance statistic, Ext Abs CHI
2001, (New York: ACM, 2001), 319-320.

[8] Tinwala, H. and MacKenzie, I. S., Eyes-free text entry
with error correction on touchscreen mobile devices,
Proc NordiCHI 2010, (New York: ACM, 2010), 511-
520.

[9] Welford, A. T., Fundamentals of skill. London:
Methuen, 1968.

Figure 6. Results dialog for an example

phrase. The recognizer produced the

transcribed phrase. The automatic error

correction algorithm produced the

Corrected phrase.

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2590

