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Abstract 
We developed a text entry method for touchscreen 
devices using a Graffiti-like alphabet combined with 
automatic error correction.  The method is novel in that 
the user does not receive the results of the recognition 
process, except at the end of a phrase.  The method is 
justified over soft keyboards in terms of a Frame Model 
of Visual Attention, which reveals both the presence 
and advantage of reduced visual attention. With less 
on-going feedback to monitor, there is a tendency for 
the user to enter gestures more quickly.  Preliminary 
testing reveals reasonably quick text entry speeds (>20 
wpm) with low errors rates (<5%). 
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Introduction 
The recent proliferation of touchscreen mobile devices 
has generated considerable interest in gestural input 
via the fingers.  Flicking, pinching, tapping and other 
gestures are now common in the repertoire of users’ 
actions on these devices.  Generally, such gestures 
serve to control the interface, typically by moving, 
sizing, or selecting a view or on-screen object.  Another 
use of gestural input is text entry, where gestures 
produce textual symbols, such as letters, digits, or 
punctuation, or commands such as BACKSPACE, ENTER, 
or SHIFT.   

This paper focuses on gestural input for text entry.  We 
are interested in the distinct challenges presented by 
touchscreen devices as alternatives to devices with 
physical keyboards.  Physical keyboards engage the 
user’s tactile sense, providing critical information as 
fingers feel, engage, and press.  The interaction is well 
known:  Keys resist, then give way, and embark on 
their downward journey, dutifully informing the user 
that the intended keypress is complete.  No similar 
experience exists with soft keys rendered on a 
touchscreen.  And so, alternate sensory channels are 
engaged, typically visual, auditory, or both.  

Touchscreens and Visual Attention 
Besides the tactile sense, devices with physical 
keyboards create, through kinesthesia and 
proprioception, a sense of space and location.  Users 
feel the tops and edges of keys, and groups of keys, 
and develop a sense of where their fingers are and the 
direction and distance to move to engage other keys.  
Again, no such experience exists for a soft keyboard on 
a touchscreen display.  And there is little that visual or 
auditory feedback can offer to help.  Users must look at 

the display to locate a destination key, then move the 
finger toward the key to select it.  Visual attention is 
essential.  This point has an interesting implication:  
Touchscreen mobile devices are, arguably, less mobile 
than their tactile counterparts.  Mobility implies “on the 
move” and often multi-tasking.  The added visual 
demand touchscreen devices impose on the user makes 
them less mobile in the sense that users are visually 
bound to the device while using it and, therefore, are 
less mobile.   

In this paper we present a gestural text entry method 
that reduces the visual demand on users.  The starting 
point is the Unistrokes handwriting recognition method 
[2], implemented using the Graffiti gesture set.  Our 
approach is novel in that feedback about the on-going 
recognition process is not provided to the user, except 
at the end of a phrase.  The rationale for this is 
explained below.  We begin with a descriptive model for 
visual attention in terms of the frames of reference 
required for different types of interaction. 

Frame Model of Visual Attention 
There is more to visual attention than simply needing it 
or not needing it.  There is a scale along which the 
required level of visual attention varies.  To illustrate, 
we present a Frame Model of Visual Attention.  See 
Figure 1.  Four levels are shown, but the model could 
be re-cast with different granularity depending on the 
interactions of interest.   The intent is to show a 
progression in the amount of visual attention required 
for different classes of interaction tasks.  High demand 
tasks are at one end, low demand tasks at the other.  
By “demand”, we refer to the amount or precision in 
visual attention, not to the difficulty of the task.  

 
Figure 1. Frame model of visual 

attention.  Progressing from bottom to 

top, increasing levels of visual attention 

are required. 
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The point frame, at the top, requires the greatest 
demand in visual attention.  Interactions in the point 
frame demand a high degree of accuracy and, 
consequently, require sharp central vision (aka foveal 
vision).  The demand on visual attention is high.  
Examples in computing are tasks such as selecting a 
thin line or very small target, such as a pixel.  

The target frame appears below the point frame in 
Figure 1.  Interactions here involve selecting targets 
such as icons, toolbar buttons, or keys on a soft 
keyboard.  Visual attention involving foveal vision is still 
needed, but with less demand than in the point frame.  
The targets are larger and, hence, slightly less precision 
and attention are needed.  

The surface frame in Figure 1 applies to flicks, pinches, 
and most forms of gestural input on touchscreen 
devices.  The user only needs to have a general spatial 
sense of the surface on which gestures are made.  The 
visual demand is minimal; peripheral vision is 
sufficient. 

The environment frame, at the bottom in Figure 1, 
includes the user’s surroundings.  Here, the frame of 
reference encompasses the user, the device, and the 
environment.  Visual attention is not simply between 
user and device but with respect also to the user’s 
surroundings.  In most cases, the demand is low, and 
requires only peripheral vision. Some interactions 
involving a device’s accelerometer or camera apply to 
the environment frame.  Virtual environments may also 
apply here, depending on the task.   

The frame model of visual attention offers insight into 
the problem of text entry on touchscreen devices, as 
explained the next section.  

Reduced Feedback (= Reduced Visual Demand) 
The underlying philosophy of Unistrokes or Graffiti is 
that each symbol is generated by a single gesture.  
Figure 2a illustrates.  A gesture begins on touch and 
ends on lift.  Graffiti gestures are spatially independent; 
thus, they may occur on top of one another or 
anywhere on the available surface.  Although gestures 
fall within the surface frame of reference, as noted 
above, this is not necessarily true for gestures used for 
text entry.  This is explained below. 

A Graffiti gesture ends on finger lift.  A recognition 
algorithm computes a set of features for the gesture 
based on the digitized sample points.  The features are 
compared to features in a database and a symbol is 
produced as output.  Hopefully, the result is correct.  
But, if the gesture was ill formed or incorrect in any 
way, the symbol may be wrong and may require a 
corrective action.  This is shown in the last three steps 
in Figure 2a.  The user visually inspects the recognized 
symbol and decides if the result is correct.  If so, the 
next symbol may be entered.  If not, BACKSPACE is 
entered to erase the errant symbol.  Of course, 
entering BACKSPACE amounts to another full pass 
through the flowchart and does not contribute to the 
user’s intended text.   

With respect to the frame model of visual attention, the 
first three steps in Figure 2a fall within the surface 
frame.  The last three fall within the target frame since 
the user’s visual attention is on the small region of the 
display showing the recognizer output. 

(a)  

 

(b)    

Figure 2. Gestural input (a) with 

inspection after each gesture (b) without 

inspection. 
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Figure 2b shows the same entry process, except the 
last three steps are omitted.  Clearly there is less visual 
demand since the entire process falls within the surface 
frame.  The result will be faster since there are fewer 
steps.    

One final point:  The decision box in Figure 2a is a two-
choice reaction-time task and will take on the order of 
250 ms [9, p. 62].  Thus, visual inspection adds about 
250 ms to the time for each gesture.  As a simple 
illustration of the effect, consider text entry at 24 words 
per minute.  This is equivalent to 24 × 5 = 120 
characters per minute or 2 characters per second or 1 
character every 500 ms.  Adding 250 ms to this yields 
an entry speed of 1 / (750/60000 × 5) = 16 words per 
minute.  That’s of 33% slower!  Thus, the increased 
visual demand in monitoring the on-going recognition 
process comes a substantial performance cost. 

Although users can choose any strategy they like (e.g., 
not looking at the display), our experience with text 
entry systems using gesture recognition (and, as well, 
word prediction) is that users generally choose to 
monitor the on-going recognition process.  An idea we 
are pursuing in this research is to take this choice away 
— remove or hide the gesture-by-gesture feedback that 
users monitor during input.  With this feedback 
removed, users should proceed more expeditiously 
since (a) there is no reaction-time task at the end of 
each gesture and (b) the interaction is fully in the 
surface frame.  Of course, users inspect the results of 
gesture recognition for a reason – to observe if an error 
occurred.  So, an additional idea we are pursuing is to 

handle recognition errors using automatic error 
correction.  Users only see the result of their gestures 
at the end of a phrase.  Hopefully, the result is 
satisfactory.  Our automatic error correction algorithm 
is described next. 

Automatic Error Correction 
Automatic error correction is not new.  At a simplistic 
level, the auto-correct feature on word processors 
qualifies:  Type adn and the system converts to and.  
Specific algorithms have also been proposed and 
tested.  Clawson et al. [1] developed Automatic 
Whiteout++ for mobile phones.  Their system corrects 
common errors during entry, such as hitting a 
neighboring key, character substitution, or 
transposition (the instead of teh).  When tested on data 
from a mini-QWERTY experiment, the system corrected 
32% of the errors automatically. 

Kristensson and Zhai proposed an error correction 
technique using spatial pattern matching [3]. For 
example, entering the on a QWERTY keyboard forms a 
spatial pattern.  If the user enters rgw, it is converted 
to the because the patterns are geometrically similar 
(and rgw is not in the dictionary).  Pattern recognition 
was performed at the word level, when SPACE was 
entered.  Overall, their system had a success rate of 
83%. 

Our automatic error correction method is intended for 
gesture input, so keyboard geometry is not a 
consideration.  The algorithm works as follows. 
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The incoming stream of gestures is processed as a 
series of inputted words (SPACE-delimited gestures).  
Each gesture in a word is deemed correct, incorrect (for 
a variety of reasons), or unrecognized.  Unrecognized 
gestures remain in the inputted word as placeholders 
(“#”).  This is important:  For an unrecognized gesture, 
a character is intended, but the actual character is 
unknown.  The inputted word is looked up in a 
dictionary containing words and their frequencies from 
a corpus.  If the word is in the dictionary, it is left as-is.  
If the word is not in the dictionary, then the algorithm 
tries to correct the word as follows.  The minimum 
string distance (MSD) [7] is computed between the 
inputted word (which is not in the dictionary) and all 
words in the dictionary.  Three lists are produced: 
words with MSD = 1, MSD = 2, and MSD = 3.  Each list 
is ordered by decreasing frequency.  The three lists are 
concatenated.  Then, all words of the same size as the 
inputted word are removed and put at the front of the 
list (again, ordered by decreasing frequency).  The 
word at the front of the new list is selected to replace 
the inputted word.  Note that depending on the word 
and the errors, the lists may be large, small, or empty.   
If all lists are empty, the inputted word is left as-is. 

The dictionary used for testing is based on the British 
National Corpus and contains about 10,000 words [6].   

The algorithm described above is similar to the 
automatic error correction algorithm described by 
Tinwala and MacKenzie [8].  There are a few 
differences, however.  Their system provided “click” 
auditory feedback following each stroke and also spoke 
words through a text-to-speech service as each word 
was entered.  Our system provides no on-going 
feedback (except for the digital ink tracking the finger 

path).  Furthermore, as described below, our 
implementation defers feedback to the end of a phrase, 
rather than providing word-by-word feedback.  The 
rationale for this is twofold: (a) to avoid the timely 
reaction-time task that occurs when recognizer results 
are inspected and (b) to reduce visual demand by 
limiting input to the surface frame. 

Although the algorithm above is simple, its utility in use 
remains to be tested.  Our initial testing is explained in 
the next section.  

Initial Test 
In-house Graffiti recognition software was integrated 
into a test program written in Java.  The software was 
tailored to run on a Samsung Galaxy Tab 10.1 running 
Android 3.1.  See Figure 3.  The interface presents 
phrases for input selected at random from a set of 500 
phrases [5].  See Figure 4.  User input is seen in 
Figure 5.  Gesture recognition is not revealed to the 
user until the END button is tapped at the end of a 
phrase, whereupon a popup results dialog appears.  
See Figure 6.  The example shows an entry speed of 
21.4 wpm with an error rate of 12.0% in the (raw) 
transcribed text.  The corrected text has an error rate 
of 0%.  It appears three errors were committed: two 
strokes were unrecognized, one was misrecognized.  All 
three errors were corrected by the algorithm.  Of 
course the algorithm doesn’t work as well in all cases.   

As a further test, a user experienced with Graffiti 
entered 25 consecutive phrases with the test software. 
The mean entry speed was 21.7 wpm.  The mean error 
rate in the transcribed text was 12.8% (min = 0%, 
max = 25.0%). For the corrected text, the mean error 
rate was 4.3% (min = 0%, max = 21.9%).  See 

 
Figure 3. Samsung Galaxy Tab 10.1 

running Android 3.1. 

 

 
Figure 4. Experiment software. 

 

 
Figure 5. Gestural input with the 

experiment software. 
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Figure 7.  Clearly, the automatic error correction 
algorithm worked quite well overall, fully correcting 12 
of 24 phrases containing errors.  The few cases were 
the algorithm did not do so well occurred where the 
SPACE stroke was misrecognized; this caused two words 
to be interpreted as one. 

 
Figure 7.  Transcribed and corrected error rates (%) 

for 25 consecutive phrases of entry. 

Some examples of errant and corrected words are 
i#reeular  irregular, sa#  say, yu#ta  quota, 
custdo#  customs, t##k  took, tod  too, tog#ther 

 together. 

One frequently-cited complaint about soft keyboards is 
that they consume screen space and obscure the 
underlying GUI [4].  This is unavoidable.  Gestural text 
entry, as presented here, operates in the surface frame 
of reference.  There is less visual demand.  Although 
not implemented in our prototype software, the 
gestural input surface may be translucent, covering the 
entire display but without obscuring the underlying 
GUI.  This will be the subject of further work. 
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Figure 6. Results dialog for an example 

phrase.  The recognizer produced the 

transcribed phrase.  The automatic error 

correction algorithm produced the 

Corrected phrase. 
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