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ABSTRACT 

 

Although text entry on mobile phones is abundant, research strives to achieve desktop 

typing performance “on the go”.  But how can researchers evaluate new and existing 

mobile text entry techniques?  How can they ensure that evaluations are conducted in a 

consistent manner that facilitates comparison?  What forms of input are possible on a 

mobile device?  Do the audio and haptic feedback options with most touchscreen 

keyboards affect performance?  What influences users’ preference for one feedback or 

another?  Can rearranging the characters and keys of a keyboard improve performance?  

This dissertation answers these questions and more. 

The developed TEMA software allows researchers to evaluate mobile text entry 

methods in an easy, detailed, and consistent manner.  Many in academia and industry 

have adopted it.  TEMA was used to evaluate a typical QWERTY keyboard with multiple 

options for audio and haptic feedback.  Though feedback did not have a significant effect 

on performance, a survey revealed that users’ choice of feedback is influenced by social 

and technical factors. 

Another study using TEMA showed that novice users entered text faster using a 

tapping technique than with a gesture or handwriting technique.  This motivated 

rearranging the keys and characters to create a new keyboard, MIME, that would provide 
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better performance for expert users.  Data on character frequency and key selection times 

were gathered and used to design MIME.  A longitudinal user study using TEMA 

revealed an entry speed of 17 wpm and a total error rate of 1.7% for MIME, compared to 

23 wpm and 5.2% for QWERTY.  Although MIME’s entry speed did not surpass 

QWERTY’s during the study, it is projected to do so after twelve hours of practice.  

MIME’s error rate was consistently low and significantly lower than QWERTY’s.  In 

addition, participants found MIME more comfortable to use, with some reporting hand 

soreness after using QWERTY for extended periods. 
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Chapter 1  
Introduction and Motivation 

For more than a century, people have interacted with machines to enter text.  Starting 

with typewriters and transitioning to computers, typing is now the primary method of 

preparing reports and writing correspondences in both academia and industry.  Compared 

to hand-written text, typed text is consistently legible and (with practice) can be produced 

more quickly.  Typing is so prolific that some elementary schools are teaching typing 

skills to students in kindergarten [53]. 

Computer users young and old are accustomed to entering text using a keyboard 

while seated at a desk.  Mobile devices are now facilitating text entry in more diverse 

environments and situations.  Mobile touchscreen devices, such as smartphones and 

tablets, are now pervasive in contemporary society and are often used for SMS text 

messaging and social networking.  However, mobility comes at a cost.  Instead of using 

all ten fingers to type on a stationary desktop keyboard, mobile users often balance 

holding a mobile device with other items (e.g., purse, briefcase, umbrella, or coffee cup).  

This often leaves only one or two fingers for entering text.  In addition, being mobile (or 

even stationary in a constantly changing, possibly crowded environment) can negatively 

affect a user’s attention and accuracy when entering text.  Thus, investigating methods 

for optimizing mobile text entry is an important research topic. 

Many mobile devices use a touchscreen and a soft keyboard (also known as a 

software or onscreen keyboard) for text input.  Compared to devices with a physical 
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keyboard, touchscreen devices have a larger screen and are lighter and smaller.  

Compared to physical keyboards, soft keyboards are easier and less expensive to develop 

and deploy.  Although current soft keyboards lack the preferred tactile feedback of 

physical keys, emerging technology may eliminate this disadvantage [112].  Soft 

keyboards can change appearance depending on context (e.g., numerical versus 

alphanumeric entry), previous user input (e.g., word completion), or disappear 

completely when text entry is not needed.  This last benefit allows other content (e.g., 

pictures, text, or video) to occupy the precious screen space previously reserved for text 

entry.  In addition, touchscreens allow user interaction beyond simple “button” presses 

and allow users to draw gestures using a finger or stylus. This has led to a variety of soft 

keyboard designs that attempt to replicate the performance of desktop typing in a mobile 

environment. 

1.1 Established Performance Metrics 

Two performance metrics are predominantly used to evaluate and compare text entry 

techniques: entry speed and accuracy.  Entry speed, as the name suggests, represents how 

quickly a user can enter (i.e., transcribe) text, and is typically measured in words per 

minute (wpm).  Sometimes, it is measured in characters per minute (cpm).  Regardless of 

the actual text entered, a “word” (for the purposes of calculating entry speed) is deemed a 

consecutive sequence of five characters, including spaces [143].  The following equation 

calculates entry speed, in wpm, given the number of transcribed characters, C, and the 

entry time (in seconds), t: 
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t
CEntrySpeed 60
5
×=  

Equation 1. Entry speed calculated from the number of 
entered characters, C, and entry time (in seconds), t. 

The interpretation of C is surprisingly convoluted.  Measuring t starts when the 

user enters the first character, c0.  Because this approach ignores the mental and physical 

preparation time to enter c0, entry speed calculations should not include it among the 

transcribed characters.  Thus, a value of C-1 replaces C in Equation 1 [64, 130 (p. 49)]. 

However, if a hidden character (e.g., a newline or a carriage return) is used to terminate 

entry and timing, it should be added to the number of transcribed characters [64] (thus 

restoring the original value of C in Equation 1). 

At first, measuring accuracy seems straightforward – an error rate simply reflects 

the amount of wrong input relative to all input.  In user studies, participants are presented 

with a phrase to enter.  They then enter that phrase using the technique under evaluation. 

Accuracy is measured by comparing the transcribed input to the presented text.  But how 

does one classify “wrong input”?  As evident in Figure 1, one might use a character-wise 

comparison to claim that the six characters (“xck br”) are incorrect, as they do not 

correspond with the presented text. 

 
Figure 1. An example illustrating different interpretations of accuracy [105, 106]. 

An error rate might then be calculated as follows: 
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( ) %100
,max

×=
BA

iseErrorsCharacterWteiseErrorRaCharacterW  

Equation 2. Calculation of a character-wise error rate, where A and B are the presented and 
transcribed text, respectively. 

However, one might posit that the insertion of “x” and omission of “o” are the 

only two errors made.  The Minimum String Distance (MSD) [105] function returns the 

minimum number of operations required to convert one string (i.e., the transcribed text) 

to another string (i.e., the presented text).  The considered operations are as follows: 

insertion of a character, deletion of a character, and substitution of one character for 

another.  Given this, MSD error rate is calculated as follows [105]: 

( ) %100
,max

),MSD(
×=

BA
BAteMSDErrorRa  

Equation 3. Calculation of MSD error rate [105]. 

Another approach analyses the user’s entire input stream to better represent actual 

text entry interaction.  Uncorrected Error Rate (UER), Corrected Error Rate (CER), and 

Total Error Rate (TER) [106] divide user input into the following values and are 

calculated according to Equation 4, Equation 5, and Equation 6, respectively:  

Correct (C): Correctly transcribed characters. 

Incorrect Not Fixed (INF): Incorrect or missing characters that occur in the 

transcribed text. This value equals the MSD for the presented and transcribed text. 

Incorrect Fixed (IF): Incorrect characters that were corrected (and therefore do 

not appear in the transcribed text). 
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%100×
++

=
IFINFC

INFdErrorRateUncorrecte  

Equation 4. The calculation of Uncorrected Error Rate [106]. 

%100×
++

=
IFINFC

IFrrorRateCorrectedE  

Equation 5. The calculation of Corrected Error Rate [106]. 

%100×
++

+
=

IFINFC
IFINFRateTotalError  

Equation 6. The calculation of Total Error Rate [106]. 

Another measure for characterizing accuracy is the keystrokes per character 

(KSPC) metric [60].  It represents the number of keystrokes used to enter all the 

transcribed characters, including those keystrokes used to correct errors.  The observed 

KSPC measure can be compared to the technique’s inherent KSPC to gauge accuracy.  

Considering only lowercase letters, the ubiquitous QWERTY keyboard has a KSPC of 1, 

as each letter of the alphabet can be entered with a single key press.  Conversely, using 

the multi-tap method to enter text using a 12-key keypad requires multiple presses of a 

key to enter most letters.  Observing a KSPC measure much higher than the inherent 

value would indicate many input errors being committed (and possible corrected), while 

an observed KSPC close to the inherent one would indicate accurate text entry. 

Performance metrics are often calculated by running user studies (experiments) 

and recording empirical data, based on the actual performance of participants.  Although 

this reflects actual performance, it can be costly and time-consuming.  Another evaluation 
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technique involves the use of mathematical models, such as Fitts’ Law [29], and a 

language corpus to calculate expert entry speed [14, 103]. 

1.2 A Priori and Post Hoc Power Calculations 

Determining the ideal sample size of participants for a user study can be accomplished 

using a priori power calculation.  The calculation requires specifying an effect size and 

the likely standard deviation of the results [55].  In HCI, this calculation is rarely 

performed, as researchers simply want to investigate whether or not a statistically 

significant effect size exists [61 (p. 172)].  Typically, the sample size is chosen to mimic 

the size used in published research [61 (p. 171), 75 (p. 234)]. 

Post hoc power calculations appear in Chapter 6 and Chapter 7 to compare the 

statistical power of the parametric and non-parametric tests used.  However, post hoc 

power calculation is controversial [35, 56, 117] and discouraged [54, 110, 117], as it 

simply a restatement of the p-value [35, 56, 110, 117] and leads to flawed logic about 

rejecting the null hypothesis [35, 54, 56, 110, 117].  Consequently, post hoc power 

calculations are usually not included in HCI research. 

1.3 Dissertation Contributions 

One of the major contributions in this dissertation is the design of a new soft keyboard for 

optimized mobile text entry.  It is called My Input Method Editor (MIME).  An “input 

method editor” is an Android developer term for a text input method. After conducting a 

thorough examination of the benefits and drawbacks of existing text entry methods, a 
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design direction is identified.  The MIME input method has three overarching 

characteristics: one-handed operation using one thumb for text entry, the absence of 

autocorrect, and easily accessible special characters. 

The QWERTY layout is suitable for two-handed (or even two-thumb) input, but 

mobile users often have only one hand available for text entry.  Some tablets have 

detachable physical keyboards that facilitate typing, while others are large enough to type 

using multiple fingers on both hands.  Smartphones can be turned sideways to use a 

QWERTY keyboard wide enough for comfortable two-thumb use, but this layout 

obstructs the underlying user interface.  MIME targets one handed, one thumb text entry 

on smartphones held in portrait orientation.  To facilitate this, MIME employs a novel 

layout that places frequent characters in easy to select locations.  This requires building a 

corpus to determine character frequency and gathering movement time data for onscreen 

key locations.  Previous research gathered movement time data for stylus input, but one’s 

grip on a smartphone makes thumb movement more restrictive than that of a stylus.  

Additionally, the trend towards larger smartphone screens makes traversing the width of 

the QWERTY keyboard burdensome. 

The inaccuracy often associated with mobile text entry on a soft keyboard can be 

mitigated using techniques to automatically replace non-dictionary words.  These 

techniques assume that non-dictionary words are incorrectly spelled dictionary words.  

However, this assumption can be wrong and the inserted words can lead to frustrating 
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and embarrassing conversations.  Such instances have become infamous in pop culture1.  

To avoid these situations, MIME does not implement autocorrect techniques.  

Sending text messages and social networking often involves entering smilies or 

emoticons – a sequence of alphanumeric and punctuation characters used to convey one’s 

emotions.  Entering these characters on a mobile soft keyboard usually involves 

navigating numerous levels of submenus.  MIME aims to use simple gestures and the 

option to “long press” (i.e., press and hold for a very short duration, rather than tap) a 

button to enter more characters than QWERTY, without the need for submenus. 

Another major contribution is a software framework for evaluating mobile text 

entry methods.  The software tool was used in this dissertation, and is in current use by 

others in academia and industry to ensure consistency in mobile text entry user studies.  

The contributions of this dissertation are summarized as follows: 

• Examination of the benefits and drawbacks of existing mobile text entry methods, 

including: 

o Character recognition 

o Menu navigation 

o Mid-air gesture recognition 

o Optimized layouts 

• Development of software to facilitate text entry research on Android devices 

                                                 

1 http://www.damnyouautocorrect.com/ 

http://www.damnyouautocorrect.com/
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• Introduction of a new methodology for conducting mobile text entry user studies 

• Exploration of users’ mobile text entry feedback preferences and their effect on 

performance 

• Investigation of easily-selectable key locations on a mobile touchscreen 

• Development of a new optimized mobile text entry technique 

1.4 Dissertation Organization 

This dissertation is organized as follows:  Chapter 2 reviews existing text entry 

techniques that could be used on mobile and touchscreen devices.  The chapter also 

discusses these techniques to justify preliminary design decisions for MIME.  Chapter 3 

presents software to evaluate text entry techniques on mobile devices, while Chapter 4 

investigates the role and effect of aural and haptic feedback when typing.  Evaluating text 

entry techniques requires a set of phrases that reflect realistic input.  Chapter 5 describes 

the creation of this corpus to evaluate MIME.  Designing the MIME character layout will 

require empirically determined movement times.  Chapter 6 gathers these values, and 

Chapter 7 generates and evaluates the MIME layout.  Conclusions and future work are 

presented in Chapter 8. 
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Chapter 2  
Reviewing Touch-Based Mobile Text Entry 

A digitizing tablet (also known as a digitizer or graphics tablet) is a surface on which a 

user can draw with a pen-like stylus.  The advent of digitizers in 1956 sparked interest in 

handwriting recognition [79, 115] – computer-based text entry using handwritten 

gestures.  However, several issues impede accurate, real-time recognition of handwriting 

[79, 114, 115]. 

Handwriting Variation: Handwriting varies between individuals to such an 

extent that it is used as a forensic tool to identify the writer of a document with 

95% confidence [109].  Additionally, factors such as stress, carelessness, or 

fatigue can also result in handwriting that is too sloppy for even a human to 

understand. 

Segmentation: Strokes that occur too closely in time and/or space are difficult to 

discern as separate gestures.  This is especially true for cursive (script) 

handwriting, where an entire word could be written with a single, continuous 

stroke. 

Semantics: Gestures could map to similar characters in the language (e.g., “O” 

(oh) and “0” (zero), “I” (eye) and “l” (el) and “1” (one), etc.). 

These problems can be alleviated by placing restrictions on the user.  A common 

restriction is the use of a gesture alphabet, to which characters (i.e., letters, numbers, and 

sometimes punctuations) are mapped.  The gesture alphabet specifies the shape of 
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handwritten strokes, their direction, and order of any intermediate strokes.  Alternatively, 

dynamic writing information, such as the number, order, direction, and speed of 

intermediate strokes, can help identify the written gesture [114]. 

A shortcoming of gesture recognition is that English text entry is much faster 

using a standard QWERTY keyboard [115].  Typical handwriting speed in English is 

about 18-30 words-per-minute (wpm) [5 (p. 287), 22 (p. 61), 115, 143 (p. 196)], while a 

proficient touch typist is about twice as fast [22].  So why use gesture recognition at all 

for text entry? 

Gesture recognition is feasible in situations where using a full sized keyboard is 

impractical.  For example, with mobile computing (e.g., with cell phones, PDAs), users 

often hold the device with two hands and type on mini or onscreen keypads with their 

thumbs.  Alternatively, they hold the device with one hand and enter text with the other.  

In both circumstances, the speed advantage of touch typing is minimized or eliminated.  

When a digitizer is integrated into the device’s display (often called a touchscreen), input 

can be performed over the user interface.  The elimination of a physical keypad can 

improve portability and the elimination of an onscreen keypad relinquishes valuable 

screen space. 

Text entry using gestures is not limited to drawing characters on a digitizer.  With 

some techniques, gestures drawn on a digitizer represent navigation of menus; the 

selection of a menu item corresponds to entry of a character or word.  Other techniques 

employ sensors to recognize movement in mid-air.  Computer vision technology has also 
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been used to capture and analyse a user’s hand pose [71, 82], which is mapped to entry of 

a character or word.  However, computer vision techniques for text entry will not be 

covered in this review.  This literature review details and compares English gestural text 

entry techniques in the categories of character recognition (a.k.a. “symbolic keyboards” 

[73]), menu navigation (a.k.a. “target keyboards” [73]), and mid-air movement.  It then 

presents techniques that use a touchscreen to recognize user taps on an onscreen 

keyboard and techniques that use a combination of input to facilitate text entry. 

2.1 Character-Based Recognition 

First introduced in 1993, Unistrokes is a gesture alphabet for stylus-based text entry [31, 

32] (Figure 2).  The single-stroke nature of each gesture allows entry without the user 

attending to the writing area [32] and simple segmentation of characters.  Additional 

gestures change modes to allow entry of uppercase letters, numbers, and 

punctuation [31].  Furthermore, the alphabet’s strokes are well distinguished in 

“sloppiness space” [32], allowing for accurate recognition of not-so-accurate input. 

 
Figure 2. The Unistrokes alphabet [12]. The dot indicates the start of a gesture. 

Unistrokes gestures bear little resemblance to Roman letters.  However, each 

letter is assigned a short stroke, with frequent letters (e.g., E, A, T, I, R) associated with a 

straight line.  Unistrokes is analogous to touch-typing with a keyboard, as practice will 
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result in high-speed, “eyes-free” input [32].  A small pilot study of three participants 

showed initial text entry performance of 6.2 wpm, increasing to 13.0 wpm after a week of 

practice [32]. 

In 1996, Palm, Inc. released its PDAs with the PalmOS operating system.  These 

devices allowed text entry using the Graffiti gesture alphabet (Figure 3) [7].  Strokes are 

recognized as lowercase letters, uppercase letters, or numbers, based on the location of 

input. 

 
Figure 3. The Graffiti alphabet [12]. 

Like Unistrokes, each gesture is a single stroke.  However, unlike the Unistrokes 

alphabet, Graffiti gestures resemble their corresponding Roman letter.  This is intended to 

facilitate learning.  Support for this was found in a previous study, where users 

demonstrated 97% accuracy after only five minutes of practice [68].  However, a 

longitudinal study spanning twenty, fifteen-phrase sessions compared Graffiti to 

Unistrokes. Initially, entry speed was similar between the two alphabets at 4 wpm.  With 

practice, entry with Graffiti reached 11 wpm, but was surpassed by Unistrokes at 

16 wpm [12]. 

Because input methods can vary greatly with device, researchers developed 

Minimal Device Independent Text Input Method (MDITIM) [42].  MDITIM maps 
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combinations of the four compass directions to character input. Movement in the 

compass directions can be associated with joystick, mouse, or trackball movement, key 

presses on a keyboard, or gestures on a touchpad (as in Figure 4).  As with Unistrokes, 

MDITIM was designed for robust recognition.  To that end, its gestures represent prefix 

codes – no gesture represents the beginning of another gesture in the alphabet.  This 

allows multiple characters to be written with a single, continuous gesture without 

hindering recognition [42]. 

 
Figure 4. The MDITIM alphabet [64]. 

In a user study, participants practiced MDITIM text entry using a touchpad over 

10 sessions.  During that time, entry speed increased from 2.5 wpm to 7.6 wpm and error 

rates dropped from 15% to 6%.  To test the device independence of MDITIM, participants 

then performed MDITIM entry using a joystick, keyboard, mouse, and trackball.  Text 

entry was fastest with the touchpad and slowest with the keyboard.  Joystick input had the 

highest accuracy, while the trackball yielded the lowest [42]. 
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As with handwriting, stylus text entry typically requires a high degree of motor 

coordination.  EdgeWrite [140] was introduced in 2003 to facilitate text entry for users 

with motor impairments (e.g., Cerebral Palsy, Muscular Dystrophy, etc.) [129].  

EdgeWrite gestures (Figure 5) resemble Roman letters, but are drawn along the edges of 

the writing area.  A raised border is placed around the writing area to guide movement.  

Gestures are recognized based solely on the order in which corner regions are hit [140].  

Thus, hand tremors are less likely to result in recognition errors. 

 
Figure 5. The EdgeWrite alphabet [137]. 

To improve recognition further, the regions defined as “corners” in the writing 

area change based on the handedness of the user and after hitting an initial 

corner (Figure 6) [140]. 
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Figure 6. After the first corner hit, the areas recognized as corners transition from the layout on the 

left to the one on the right [140]. The top pair of layouts represents an ambidextrous layout. The 
middle pair caters to right handed input, while the bottom pair favours left handed input. 

A small study involving four participants with differing motor impairments 

compared EdgeWrite to Graffiti.  Each participant performed their individual task 

(specific to their motor skill) more accurately with EdgeWrite than with Graffiti [140].  A 

study of ten able-bodied participants yielded entry speeds of 6.6 wpm for EdgeWrite and 

7.2 wpm for Graffiti.  Error rates were 0.34% for EdgeWrite and 0.39% for Graffiti.  

These values were averaged over eight sentences, after twelve practice sentences [140]. 

The EdgeWrite technique has been adapted for use with multiple input 

devices (Figure 7), including gaming joysticks [136, 137], wheelchair joysticks [136, 

138], isometric joysticks [18, 134, 136], trackballs [132, 136], and four-button keypads 

[136].  EdgeWrite’s simple corner-based input scheme makes it viable in many devices 

and precludes the need for an onscreen menu or keyboard.  Furthermore, its robust 

recognition algorithm is well-suited for motor impaired users and “situationally impaired 

able-bodied user who are on-the-go” [136]. 
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Figure 7. A summary of devices used with EdgeWrite [136]. 

The initial EdgeWrite implementation used a touchscreen or touch pad.  Character 

segmentation would occur when the user’s stylus or finger lifted from the input surface.  

With wheelchair and gaming joystick input, the limits of stick movement provide the 

input boarders; character segmentation occurs when the stick returns to its rest position.  

With isometric joystick, trackball, and keypad input, segmentation is triggered by a 

timeout (i.e., duration of no input).  Input via a four-button keypad simply associates 

corner hits to button presses.  However, the boundless input of an isometric joystick and 

trackball require more sophisticated recognition. 

With Trackball EdgeWrite [132], gestures are not continuous motions, but rather 

a series of “pulses” (i.e., strokes) that determine movement between the four EdgeWrite 

corners.  Angular thresholds distinguish between vertical, horizontal, and diagonal 

transitions.  Two additional features maintain robust recognition of gestures: 

non-recognition retry and slip detection.  With non-recognition retry, an incorrect gesture 

can be restarted without triggering character segmentation.  If the recognition algorithm 

cannot resolve the input as a valid gesture, pulses are trimmed from the start of the 

sequence until the gesture is validated.  Slip detection uses the speed of input to 
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determine if a corner was inadvertently hit.  The recognized character is determined using 

a binary decision tree and digraph probabilities [132].  EdgeWrite input with an isometric 

joystick uses the Trackball EdgeWrite technique, but with different thresholds and 

timeouts [134]. 

2.2 Menu Navigation 

Pie menus [38] are radial menus in which a selection is made by drawing from the center 

of the on-screen menu to the desired option on the menu’s outer edge.  By placing 

characters as the menu options, pie menus can be used to enter text. 

Published in 1994, T-Cube [119] initially presents a single pie menu to the user 

(centre of Figure 8).  The options along its edge include whitespace characters and 

modifiers for uppercase letters and commands.  Beginning a stroke at the center of this 

initial menu can select its options.  However, beginning a stroke at the edge of the initial 

menu displays additional menus containing lowercase letter, numbers, and punctuations.  

The options available in the additional menus are not visible beforehand and must be 

memorized by the user.  A longitudinal study of eleven users over nine, thirty-minute 

sessions shows a linear increase in entry speed from about 18 cpm (3.6 wpm) to a 

maximum of 106 cpm (21.2 wpm) [119]. 
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Figure 8. Inputs available via T-Cube [119]. 

Two techniques published in 1998 use pie menus to enter multiple characters with 

a single stroke: Cirrin [72] and Quikwriting [89].  Cirrin presents English alphabet 

characters in a pie menu.  The layout of characters was chosen to minimize the average 

length of a word’s gesture, based on an English corpus [72].  To enter a word, the user 

moves the pointer (controlled by a stylus, mouse, etc.) from the center of the menu to the 

first letter of the word, then to subsequent letters.  Letters are selected if the pointer enters 

its region.  The pointer can move from one letter’s region to the region of the subsequent 

letter in the word if the regions are adjacent (e.g., “fin” in “finished”, as depicted in 

Figure 9).  Otherwise, the pointer must pass through the center of the menu (e.g., “ish” in 

“finished”, as depicted in Figure 9).  The gesture is completed upon pen/mouse up; the 

word is entered, and appended with a space.  A user with two months of Cirrin 

experience was able to enter text at 20 wpm [72]. 
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Figure 9. A path used to enter the word “finished” using Cirrin [72]. The pen-down location is 

indicated with a dot. 

Quikwriting [89] divides the pie menu into a 3×3 grid, where the center zone 

(zone 5) is called the “resting zone” and the other zones (zones 1-4 and 6-9) are each 

called a “major zone”.  Each major zone is similarly subdivided into a 3×3 grid, with the 

center zone left unused and the other zones each called a “minor zone”.  Each minor zone 

represents, at most, one character (Figure 10). 

 
Figure 10. An example of entering “f” (left) and the word “the” (right) using Quikwriting [89]. 

A character is represented by its [i, j] coordinates in the pie menu, where i 

represents its major zone, and j is its minor zone.  To enter a character, the pointer must 
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leave the resting zone via major zone i.  Once a major zone is entered, zones 1-4 and 6-9 

become minor zones.  The pointer must travel around the pie menu (if necessary), and 

re-enter the resting zone from minor zone j.  If i=j (as is the case with “t”), then traversal 

around the pie menu is not necessary – the pointer would travel from the resting zone to 

zone 6, and immediately back to the resting zone.  Character segmentation is indicated by 

egress and ingress of the resting zone.  Quikwriting was designed to allow continuous 

writing without lifting the stylus (or releasing a button) and without halting pointer 

movement [89] – an entire sentence could be written with a single gesture! 

A separate, longitudinal study compared using Quikwriting with a stylus to using 

Quikwriting with a gamepad joystick (a.k.a. thumbstick) [43].  By the end of twenty 

sessions, totalling five hours per device, the twelve participants averaged an entry speed 

of 16 wpm using the stylus and 13 wpm using the joystick [43].  Interestingly, entry rates 

are similar to those in a longitudinal study of Unistrokes and Graffiti input [12].  In both 

studies, the initial entry for all conditions is about 4 wpm.  After twenty sessions, 

totalling about five hours per technique, Unistrokes entry speed reached 16 wpm, while 

Graffiti reached 11 wpm [12]. 

8pen (8pen.com) is a commercial variant of Quikwriting for Android devices.  It 

uses a resting zone in the center of the input area, but only four major and minor zones.  

Each major zone represents eight characters, with two characters per minor zone.  The 

characters are disambiguated using the movement direction of the pointer, whether 

clockwise or counter-clockwise.  Figure 11 illustrates entering “the” using 8pen.  The 
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pointer (i.e., the user’s finger or thumb) enters the left major zone, loops once clockwise 

to the next zone (representing the minor zone for “t”), then re-enters the resting zone.  

Without stopping, the pointer then enters the left major zone, loops counter-clockwise to 

the second minor zone (because “h” is second from the centre), passes through the resting 

zone to the bottom major zone, loops clockwise to the next minor zone, and ends in the 

resting zone.  Although the 8pen website claims text entry speeds of 30 wpm, there are no 

published papers to substantiate the claim. 

 
Figure 11. An example of entering “t” (left), “h” (centre), and “e” (right) using 8pen (8pen.com). 

Like Quikwriting with a gamepad joystick, SonicTexting [96] maps characters to 

the continuous movement of the thumbstick (Figure 12).  However, with SonicTexting, 

there is no onscreen menu.  Instead, characters are presented aurally.  As the user moves 

the thumbstick along a path, he or she hears the corresponding letter, looped 

continuously.  A character is entered by returning the thumbstick to its rest position.  

Entry can be cancelled by pressing down on the thumbstick, which also acts as a button.  

The creator of SonicTexting describes it as “an attempt to tap into the sources of audio-

tactile gratification”, citing “the addictive qualities of puncturing bubble-wrap” [96].  

Although this audio-tactile gratification would not translate to text entry on mobile 
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devices, thumbstick movement could be mapped to gestures on a touchscreen.  

Characters could be entered upon a finger- or thumb-up event. 

 
Figure 12. The input device and gesture map associated with SonicTexting [96]. 

Quikwriting was also the inspiration for TwoStick [47].  TwoStick uses a dual-

joystick game controller to enter text.  Users are presented with a nine-by-nine onscreen 

grid divided into nine 3×3 zones.  Each unit in the grid represents one character, though 

some are empty (Figure 13).  To facilitate “walk-up usability”, the characters are 

arranged alphabetically [47].  To input a character, one thumbstick selects a zone, while 

the other selects a character within the zone.  Returning the character-selection 

thumbstick to its rest position enters the character.  A longitudinal study yielded text-

entry rates of 4.3 wpm initially, increasing to 14.9 wpm after five hours of practice.  

During the same time, error rates dropped from 13.3% to 8.2% [47].  Videogames for 

mobile devices often provide virtual thumbsticks on the touchscreen.  A similar approach 

could be used to implement TwoStick. 
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Figure 13. The grid layout for TwoStick [47]. 

While the menu-based text entry techniques usually involve selection of 

stationary menu entries, Dasher [123] presents the user with a moving menu.  Pointer 

movement manipulates the speed and direction of the menu entries, which generally 

move from the right of the input area to the left. Intersecting an entry with the crosshair at 

the middle of the input area selects that entry.  The initial, top-level menu presents the 26 

letters of the English alphabet and the space character (Figure 14).  For mobile devices, 

input could come from either the touchscreen or an integrated accelerometer that measure 

device tilt. 
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Figure 14. Entering “the” using Dasher [123]. The space character is shown as “_”. 

Menu entries increase in size as they approach the crosshairs.  This way, likely 

selections are larger and unlikely selections are smaller, or not visible.  As one menu 

level approaches the crosshair, the next level appears along the right edge of the input 

area.  Subsequent levels are populated with only those letters that can form an English 

word, given the previously selected letters.  Furthermore, the relative size of the menu 

entries reflects the probability of selection.  Both menu characteristics are based on a 
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model of the English language.  An empirical study revealed an average text entry rate of 

about 18 wpm after an hour of practice, with an error rate of less than 5% [123]. 

Like Dasher, VirHKey presents a moving menu of characters to facilitate text 

entry [73].  Characters are presented on a grid of pentagons (i.e., a “pentagrid”) on a 

hyperbolic plane (Figure 15).  The direction of the user’s stroke indicates the direction of 

the desired character.  With each stroke, the view of the pentagrid is rotated so that the 

desired character moves closer to the center of the grid.  Lifting the stylus (or releasing a 

button) completes the gesture, triggers character segmentation, and enters the current 

character at the center of the pentagrid.  Because strokes serve to rotate the view of the 

pentagrid, they need not occur over the pentagrid itself.  In an evaluative study, the 

pentagrid appeared on a display, while participants drew gestures with a stylus on a 

separate digitizer [73].  Participant initially entered 6.6 wpm, but increase speed to 

22.9 wpm after twenty sessions, totalling about seven hours [73]. 

 
Figure 15. The VirHKey pentagrid layout [73]. 
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SHARK [145] and SHARK2 [50] recognize word-gestures using an onscreen 

keyboard.  They combine the single-stroke nature of Unistrokes with the continuous input 

characteristic of Cirrin and Quikwriting.  With SHARK, a word’s gesture starts from the 

key of the first letter and continues in a straight line to subsequent letters.  Upon 

pen/mouse up, the gesture is then compared to a lexicon of recognized words.  If a word 

is not in the lexicon, the user can resort to the point-and-tap input typically associated 

with onscreen keyboards.  SHARK2 does not provide point-and-tap input, but 

compensates with an enlarged lexicon of recognized words [50].  To simplify gestures 

and improve recognition, these techniques use an optimized, non-QWERTY keyboard 

layout (Figure 16).  A limited study of two participants using SHARK2 reached a speed of 

70 wpm by repeatedly entering “The quick brown fox jumps over the lazy dog”.  The 

authors of the study do not mention the amount of training given to the participants and 

admit that the result is only an indication “of what SHARK2 could potentially achieve” 

[50]. 

 
Figure 16. The word “system” being entered using SHARK2 [50]. The bold red path represents the 

correct gesture, while the blue path represents a sloppy gesture that is still correctly recognized. Both 
paths start on the S-key. 
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EdgeWrite was presented earlier as a character-based input technique.  However, 

the use of an onscreen menu can provide an “integrated help” system [74].  The 

integrated help system displays the EdgeWrite input area on the screen and guides the 

user through each gesture.  Initially, characters are grouped according to the first corner 

in their gesture sequence; each group is displayed in its respective corner (Figure 17).  

Once a corner is hit, its characters are grouped according to the next corner in sequence.  

In the “static” version of the system, the new groups instantly appear in their respective 

corners.  In the “dynamic” version of the system, movement to the next corner is 

animated [74].  A four-session study compared using a paper chart, the static system, and 

the dynamic system.  The dynamic system was consistently faster, peaking at about 

6.7 wpm.  Paper and static conditions peaked at 5.7 wpm and 5.0 wpm, respectively.  

Error rates were less than 1.5% in all conditions.  The dynamic system initially yielded 

the highest error rate, but dropped to the lowest error rate by session four [74]. 

 
Figure 17. EdgeWrite with an “integrated help system” [74]. 
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The Hex technique [127] uses seven hexagonal regions to facilitate text entry.  

One hexagon is the rest area, while the others are arranged around its perimeter.  The 

surrounding hexagons each have six characters associated with them.  When the pointer 

crosses from the rest area to one of the other hexagons, it becomes the rest area and its six 

characters are redistributed to the surrounding hexagons.  Crossing into another hexagon 

enters its character and layout returns to the original arrangement (Figure 18).  The 

benefit of this technique is that every character can be entered by navigating to only two 

regions.  Unfortunately, this limits the number of characters to 36. 

 
Figure 18. Entering the character “o” with Hex [127]. 

The Hex paper states that the pointer can be controlled using a mouse or by the 

orientation of a mobile device.  One of the Hex authors achieved entry speeds of 

10-12 wpm after approximately 30 hours of practice [127].  However, it is not clear what 

method of input was used. 

Instead of the six directions used by Hex, the LURD-Writer technique [26] uses 

only four: Left, Up, Right, and Down.  Users enter characters by moving the mouse to 

select one of four keys (Figure 19).  The characters associated with that key are then 

redistributed and the process continues until a key with a single character is selected.  
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Clicking a mouse button enters a character.  The left mouse button is used for uppercase 

letters and numbers, while the right mouse button is used for lowercase letters and special 

characters. 

 
Figure 19. The character arrangement for LURD-Writer [26]. 

LURD-Writer was designed for motor-impaired users [26].  To reduce pointer 

movement, the pointer is re-centered after each key selection.  The number of selections 

for characters varies, but frequent characters require fewer than infrequent ones.  An 

evaluation with a single, motor-impaired user yielded entry speeds of 8 cpm using a 

mouse for input. 

Distributing characters to one of four keys results in each character having an 

encoding sequence – a sequence of key selections used to input the character.  The 

technique H4-Writer (often abbreviated to “H4”) [66] uses Huffman codes [39] for 

character encodings.  Huffman codes have two valuable properties: Firstly, no code forms 
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a prefix to another code, so unlike EdgeWrite, no input event (e.g., a finger-up event) is 

required to segment character input.  This allows a continuous stream of inputs to be 

unambiguously parsed.  Secondly, using a letter frequency model guarantees that 

encoded messages are of minimum average length.  Consequently, the KSPC value for 

H4 (2.3) is lower than that of MDITIM (3.0), LURD-Writer (3.3), and EdgeWrite (4.4).  

The character encodings for H4 use the four symbols ‘0’, ‘1’, ‘2’, and ‘3’, and maps these 

symbols to four gamepad keys.  Table 1 shows the encodings, while Figure 20 depicts the 

H4 keyboard. 

Table 1. The H4 character encodings and mapping to gamepad keys. 

Character Code  Character Code 
Space 33  p 211 

e 11  g 210 
t 22  b 3203 
a 23  v 3202 
o 20  k 3201 
i 13  x 32003 
n 12  j 32002 
s 31  q 32001 
h 10  z 32000 
r 322  

 

l 300  
d 321  
c 303  
u 302  
f 301  
m 323  
w 213  
y 212  
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Figure 20. The onscreen H4 keyboard in its initial arrangement. 

In the default arrangement (shown), characters are assigned to the key that 

represents the first encoding symbol.  Once a key is activated, characters are assigned to 

the key that represents the second encoding symbol.  All non-activated characters are 

removed from the arrangement.  This reassignment continues until a key with only one 

character is activated, thus completing that character’s encoding.  The character is entered 

and the character arrangement returns to the default one. 

In a longitudinal study, participants reached 20.4 wpm, with an error rate of only 

0.69% after 400 minutes of practice.  Although the onscreen keyboard was always 

visible, the researchers state that participants stopped referring to it at approximately the 

midpoint of the study and text entry became “eyes-free” [66].  H4 has also been used 

with other input methods.  Mapping H4 “keys” to directional gestures on a touchpad 

yielded 6.6 wpm and a total error rate of 9.2%, while mapping to mid-air gestures yielded 

only 5.3 wpm and a total error rate of 10.8% [16]. 
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2.3 Mid-Air Techniques 

Unigesture [101] uses an accelerometer to determine device orientation in midair.  Its 

designers wanted to facilitate one-handed mobile text entry on small devices without the 

need for buttons or a digitizer [101].  Unigesture combines features of Quikwriting and 

T9.  Like Quikwriting, each letter of the English alphabet is assigned to one of seven 

zones arranged in a 3×3 grid.  The space character is assigned its own zone, and the 

middle zone is designated the rest zone and left empty (Figure 21).  To input the first 

letter of a word, the user tilts the device in the direction of that letter’s zone, and then 

returns the device to its rest orientation.  This continues for each subsequent letter in the 

word, resulting in a sequence of zone selections.  Entering the space character terminates 

entry of a word. 

 
Figure 21. The “spread-out” (left) and “clustered” (right) layouts of Unigesture [87]. 

With T9, each key represents three or four letters; a word is represented by a 

sequence of key presses.  A disambiguation algorithm relies on a corpus of the target 

language to map the sequence to a valid word.  Similarly, the sequence of Unigesture 

zone selections is passed to an “inference engine” that produces the corresponding word.  
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In T9 collisions occur when a sequence of key presses maps to multiple words.  The user 

selects the intended word with presses of a “next” button. Similarly, the prototype 

Unigesture system relied on a “try again” button to traverse the list of possible words.  

The designers admit that design changes would be needed in a full-featured system [101]. 

An evaluation of the Unigesture system evaluated a mock hand-held device 

(containing the accelerometer) connected to a PC (providing visual feedback and data 

recording).  Two letter layouts were tested: “spread-out” reduced the number of possible 

collisions; “clustered” simplified selection of frequent letters.  In addition, two interaction 

styles were compared: “deep tilt” required substantial tilting to register selection, but was 

resistant to accidental movement; “slight tilt” registered more motion, but allowed faster 

selection [101]. 

Based on reported data [101], participants entered text at approximately 2 wpm 

using both letter layouts.  Furthermore, the slight-tilt interaction resulted in more errors 

than the deep-tilt technique; specific error rates were not available.  By the end of the 

study, two participants experienced wrist fatigue and one experienced wrist pain.  A 

quarter of participants reported that diagonal tilts were especially difficult. 

The creators of Unigesture went on to design TiltType [87], which combines 

tilting and button presses to enter letters, numbers, and punctuation.  Three buttons are 

used to enter English letters.  Each button is associated with a 3×3 grid of letters.  Letters 

are arranged alphabetically and occupy all nine cells in the grid (i.e., there is no rest 

zone).  The contents of each grid are not displayed, but mnemonic labels appear on the 
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border of the prototype device [87].  A user types a letter by pressing the button 

corresponding to the letter’s grid and tilting (if necessary) in the direction of the letter.  

At this point, the letter corresponding to the button press and tilt appear on the display.  

The user can change the tilt to select a different letter, or release the currently pressed 

button to confirm entry of the displayed letter.  Unlike Unigesture, character input is 

deterministic; no disambiguation is needed.  The designers did not perform an evaluation 

study, but informal use did not result in the wrist fatigue that was reported with 

Unigesture [87]. 

TiltText [126], like TiltType, uses device orientation to facilitate deterministic 

character input.  Keys on a standard telephone keypad are associated with multiple 

letters.  For example, the 2-key represents the first three letters of the English alphabet.  

Using a technique called Multi-Tap, the user would enter “a”, “b”, or “c” by pressing the 

2-key one, twice, or trice in rapid succession, respectively.  TiltText augments a cell 

phone with an accelerometer.  It determines the desired letter using the tilt of the cell 

phone at the time of the key press.  Continuing the 2-key example, users would tilt the 

phone left for “a”, forward for “b”, and right for “c”.  If the key had a fourth letter (as do 

the 7- and 9-keys), it would be selected by tilting the cell phone towards the user.  The 

designers also considered tilting during a key press to perform entry.  However, during a 

pilot study, they found this method to be much slower than Multi-Tap [126].  By the end 

of a 16-session study, participants were 22.9% faster with TiltText than with Multi-Tap.  

This improvement was statistically significant [126].  
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An unnamed technique places accelerometers and buttons on a glove, worn by the 

user [128]. The “data glove” recognizes motions upwards and downwards, rolls to the left 

and right, as well as button presses.  The data glove has a button on the inside of the 

index, middle, and ring finger.  However, the ring finger button was deemed too difficult 

to press, and is not used for text entry.  Text input is done by chording – performing one 

or two motions in parallel with one or two button presses.  Two recognition alphabets 

(Figure 22) were proposed and evaluated.  Method 1 associates eighteen one-motion 

chords with two characters each.  The characters are designated “Map1” and “Map2”. A 

button press toggles between the two states.  For example, performing an upwards 

gesture when Map1 is active enters the letter “t”.  Performing the same gesture when 

Map2 is active, results in the letter “g”. Method 2 uses up to two motions per chord, but 

assigns a unique chord to each character.  The study showed the entry rate of Method 1 to 

be significantly faster than that of Method 2.  Method 1 was also the most accurate 

technique, but the difference was slight and no indication of statistical significance was 

given [128]. 
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Figure 22. The input maps used with the data glove [128]. 

Like the data glove, the Wii Remote (a.k.a. Wiimote) provides button and 

motion-sensing input via accelerometer and/or gyroscope.  The Wiimote is the controller 

for Nintendo’s Wii U video game system (www.nintendo.com).  Unigest [13] facilitates 

text entry by mapping combinations of vertical, horizontal, and rolling motions to letters 

of the English alphabet (Figure 23).  Frequent characters (i.e., SPACE, BACKSPACE, E, T, 

A, O, and I) are each associated with a single motion.  The remaining letters are mapped 
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to gestures that combine up to two motions.  The gestures attempt to mimic their assigned 

Roman letter (in lower case) to aid its memorization [13].  This technique could be 

adapted for mobile text entry by using the onboard accelerometer and buttons (or 

touchscreen taps) for input. 

 
Figure 23. The Unigest alphabet. 

Although no text entry user study has yet been performed with Unigest, its 

upper-bound entry rate is predicted to be 27.9 wpm.  This prediction is based on 

predictive models for cellphone [103] and Unistrokes [32] text entry.  First, a user study 

gathered movement times for each of the ten input motions (i.e., up, down, left, right, 

up-left, up-right, down-left, down-right, roll left, roll right).  These movement times were 

used to predict the entry time for each letter.  Finally, a words-per-minute speed was 

calculated using a letter-frequency distribution for the English language. 

Text entry using a Wiimote has also been attempted with onscreen keyboards on a 

large video wall [102].  The interaction employed one of three onscreen keyboards: 

Circle, QWERTY, and Cube (Figure 24).  With the Circle onscreen keyboard, users 

would select letters from a circular, alphabetical arrangement.  The Cube keyboard is 

described as a “3D extension” of T-Cube [102].  Users would draw a gesture along the 
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surface of the cube to select the desired letter. Unfortunately, Cube text entry yielded the 

highest error rate (7.0%), the lowest performance (7.6 wpm), and the lowest participant 

ratings [102]. 

 
Figure 24. The three onscreen keyboards used with the video wall:  

Circle (left), QWERTY (middle), and Cube (right) [102]. 

The accelerometer in tablets has also been used to enter text [28].  Teenage 

participants tilted a tablet to control the position of a ball (i.e., cursor) on an onscreen 

keyboard.  When the ball remained on a key for 500 ms, the corresponding letters was 

entered.  Text entry was performed with one hand and with two hands, while sitting and 

while walking.  The task involved selecting 50 letters.  Performance was best when 

seated and gripping the tablet with two hands.  Walking increased task completion time 

and error rate, and the one-handed grip resulted in slower entry and more errors. 

2.4 Tapping and Hybrid Techniques 

Instead of using gestures for text entry, some techniques provide a soft keyboard for users 

to simply tap (with a finger, thumb, or stylus) the desired characters.  Instead of using the 

QWERTY layout that is ubiquitous in desktop computing, the Opti [69] and Fitaly 

(www.fitaly.com) layouts rearrange characters so that frequent ones are in the centre of 
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the keyboard and frequent digrams (i.e., letter pairs) are adjacent to one another.  Because 

of the high occurrence of the space character, Opti provides four space keys (each twice 

the size of a letter key) instead of Fitaly’s two.  The layouts appear below in Figure 25.  

The Opti II layout represents an optimization based on the frequency of trigrams (i.e., 

letter triplets) to minimize movement across the keyboard [64]. 

 
Figure 25. The Fitaly (left), Opti (centre), and Opti II (right) layouts, after [64]. 

Expert entry speeds (using a single stylus) for the Fitaly, Opti (I), and Opti II 

keyboards are 41.96 wpm, 42.16 wpm, and 42.37 wpm, respectively.  A longitudinal 

empirical study compared stylus-based text entry performance between Opti and 

QWERTY.  Session 1 speeds favoured QWERTY with 28 wpm over Opti with 17 wpm.  

However, by the tenth session (after 200 minutes of practice), Opti surpassed QWERTY.  

Session 20 speeds were 40 wpm for QWERTY and 45 wpm for Opti.  Character-wise 

error rates rose during the study, with higher error rates for QWERTY (Session 1: 3.21%, 

Session 20: 4.84%) than Opti (Session 1: 2.07%, Session 20: 4.18%) [69]. 

The KALQ keyboard [83] was designed with one interaction in mind: a user 

grasping a tablet in landscape orientation and typing with both thumbs.  The researchers 

identified keys that can be easily selected and assigned characters to benefit from these 

keys and by alternating input between thumbs.  After an average of 16.8 hours of training 
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on KALQ, participants reached an entry speed of 37.1 wpm with an error rate of 5.2%.  

This was an improvement over the baseline QWERTY condition with an entry speed of 

27.7 wpm and an error rate of 9.0%. 

 
Figure 26. The KALQ keyboard [83] uses a split, modified layout. 

Other tapping techniques use QWERTY layout to exploit users’ familiarity with 

the layout.  However, the techniques are often hybrids, facilitating input using taps, 

gestures, or a combination of the two.  UniKeyb [41] allows users to combine taps on a 

keyboard with Unistroke gestures drawn over the keyboard.  For example, entering the 

word “the” could be accomplished by three taps, three Unistroke gestures, or a 

combination of the two (e.g., a tap on “t”, another tap on “h”, and a horizontal gesture to 

enter “e”).  This provides the user with many optimization opportunities (i.e., “Do I move 

my stylus across the keyboard to tap “e”, or do I just draw its gesture here?”).  A 

simulation suggests that augmenting tapping with Unistroke gestures can improve input 

speed by 28%.  A longitudinal study was conducted using a soft keyboard with the 

AZERTY layout (the French equivalent of QWERTY).  Session 1 speeds were only 

7 wpm, but that rose to 51 wpm by Session 36 (after 3 hours of practice).  UniKeyb entry 
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speed surpassed that of strictly tapping by Session 17 (after 85 minutes of practice).  

Unfortunately the benefit in speed came at the expense of accuracy.  The Session 36 

MSD error rate was approximately 4% for UniKeyb, but only about 1% for strictly 

tapping.  Other research [2] augments a QWERTY keyboard with gestures mapped to 

space, backspace, shift, and enter functionalities.  The addition of gestures did not have a 

significant benefit when entering lower case text.  There was a significant benefit in entry 

speed (approximately 3 wpm over ordinary QWERTY), but not error rate, when entering 

mixed case text. 

The KeyScretch [30] keyboard allows users to type a single letter at a time, or to 

press and hold a key to enter multiple letters with a single gesture.  Upon holding a key, a 

popup menu appears with four characters along its borders.  These characters are chosen 

to be the most likely subsequent letters.  Dragging one’s finger to those characters enters 

them in succession.  This allows input of multiple letters with a single gesture.  Though, 

gesture input is limited to the letters in the popup menu.  After 6 hours of training, 

participants in a user study entered text at 37.4 wpm (31.8 wpm for QWERTY) with an 

error rate of 3.8% (3.47% for QWERTY). 
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Figure 27. The KeyScretch keyboard [30] combines tapping with 

multi-letter gesture input on a popup menu. 

The word-gestures of the SHARK [50, 145] input technique were adapted to use a 

QWERTY layout.  The resulting method is called ShapeWriter [51].  Users are able to 

tap keys or draw a path starting from the first letter of a word and passing through each 

successive letter of the word.  An empirical study compared two-thumb typing on a 

physical QWERTY keyboard (“thumb keyboard”) with ShapeWriter.  Participants used 

each technique for 40 minutes, in eight 5-minute blocks.  Overall uncorrected error rate 

was identical for both at 1.1%.  Entry rate was 27.7 wpm for thumb keyboard and 

20.9 wpm for ShapeWriter.  Some participants’ ShapeWriter speed matched or surpassed 

thumb keyboard after 30 minutes of practice.  This is especially interesting, considering 

that thumb keyboard input used both thumbs, but ShapeWriter input used only one 

stylus [51]. 

ShapeWriter was available for Android devices, and even iPhones [146].  

However, Nuance Communications acquired ShapeWriter in 2010 and the technique is 

no longer officially available.  Since then, other techniques have been released that mimic 

ShapeWriter’s input technique.  These include SlideIT (www.mobiletextinput.com), 
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TouchPal Curve (www.touchpal.com), and Swype (www.swypeinc.com).  Nuance 

Communications acquired Swype in 2011, but unlike ShapeWriter, Swype is still 

commercially available. 

Castellucci and MacKenzie [15] evaluated Swype, as well as one-finger typing on 

a QWERTY soft keyboard, two-thumb typing on a QWERTY soft keyboard, and a 

Graffiti-like technique, called DioPen (www.diodict.com).  The entry speed for the one-

finger and two-thumb QWERTY techniques were very similar, at 20.9 wpm and 

20.8 wpm, respectively.  Swype had an entry speed of 16.7 wpm and DioPen had only 

7.0 wpm.  Swype had the lowest total error rate at 7.0%.  This was followed by one-finger 

QWERTY (7.1%), two-thumb QWERTY (13.8%), and DioPen (30.4%). Cuaresma and 

MacKenzie [21] evaluated TouchPal Curve and measured and entry speed of 35.3 wpm 

and a character-wise error rate of 5.4%.  However, this evaluation was very brief, with 

participants entering only nine identical phrases. 

Cuaresma and MacKenzie also evaluated the Octopus keyboard (ok.k3a.me), 

which mimics the proprietary keyboard on the BlackBerry Z10.  With Octopus, users 

type on a QWERTY keyboard, but frequent words appear above some keys.  Those 

words can be entered with an upward gesture on the respective key.  Entry speed with 

Octopus started at about 25 wpm with the first phrase and rose to approximately 70 wpm 

by the ninth phrase [21].  However, the same phrase was entered each time and the 

Octopus word suggestions quickly adapted to the repetition.  Consequently, participants 
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were able to enter entire phrases with just a few short gestures.  Still, this technique 

represents a merging of tapping and gesture input. 

Although the EdgeWrite technique is not a tapping technique, its character 

gestures have been augmented with Fisch [139], which uses gesture suffixes to enter 

entire words.  At the end of a gesture, but before character segmentation occurs, the user 

can draw a “pigtail loop” [139].  This loop indicates the end of character entry.  The 

character is recognized, and four probable words are presented at each corner (Figure 28).  

The words are determined by the characters entered thus far, and a corpus.  The user can 

enter a word by terminating the gesture in its corner.  Ending the gesture in the center of 

the writing area enters only that character. 

 
Figure 28. After entering “t” (a), a “pigtail loop” can select “the” (b) or “they” (c) [139]. 

Fisch was integrated with Trackball EdgeWrite [132].  A motor-impaired user 

averaged evaluated the technique and reached 12.09 wpm with Fisch, and 8.22 wpm 

without Fisch.  His error rate was just under 4% in both conditions [132].  Fisch was also 

integrated with EdgeWrite in mobile phones using an isometric joystick [134].  A study 

compared character-level (EdgeWrite and Multi-Tap) and word-level (EdgeWrite with 
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Fisch and T9) text entry on a mobile phone.  No statistically significant differences were 

found in either comparison [134]. 

2.5 Non-English Text Entry 

Although this dissertation focuses on English text entry, it is also important to mention 

text entry in other languages.  The prevalence of English keyboards (both desktop and 

mobile) has influenced writing in other alphabetic languages.  When chatting or writing 

SMS messages in Arabic, Hebrew, or Indian languages, users typically write 

phonetically, from left-to-right, using Roman letters in the ASCII character set.  If users 

wish to write in the original script on a mobile device, the letters of the corresponding 

alphabet are entered from right-to-left on a phone keypad or a soft keyboard.  With the 

phone keypad, characters are entered using a multi-tap technique, similar to entering 

English text.  With the soft keyboard, the characters overlay a QWERTY-like layout.  In 

either case, text is often entered without vowels (Arabic and Hebrew) or vowel signs 

(Indian languages).  Omitting the vowels completely is common even in non-electronic 

Arabic and Hebrew writing.  If desired, vowels can be inserted using the input and a 

dictionary-based word completion technique, as used with English text entry [100].  For 

Indian languages, written text always includes the vowel signs.  Based on the context of 

the input symbols, the vowels are inserted as needed [33].  Mobile text entry in English 

can also involve omitting the vowels from text (e.g., “tmrw” instead of “tomorrow”).  

However, this practice is informal and not universal. 
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Figure 29. A phone keypad for Arabic text entry [100]. 

 
Figure 30. A soft keyboard for Hebrew text entry on a PDA [100]. 

 
Figure 31. A phone keypad used to enter text in Indian languages [33]. 

Chinese text entry is much more complex, as it is a logographic system that uses 

ideograms (i.e., symbolic characters) to communicate concepts.  A single word can be 

composed of multiple characters, and each character can be composed of numerous 

strokes.  In addition, Chinese characters are also used in Japanese and Korean writing.  

The early keyboards for Chinese text entry were huge, and allowed for direct, non-

predictive entry of thousands of characters.  Current keypad-based methods for mobile 
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text entry assign a stroke to each key.  The user enters the first four strokes (in order) for 

the desired character, followed by the last stroke for the character.  A shape prediction 

algorithm then outputs the corresponding character, or a candidate list of matching 

characters [113]. 

 
Figure 32.A phone keypad for Chinese text entry [113]. 

Pinyin is an official system for entering Chinese characters using phonetics and 

Roman letters.  It allows Chinese characters to be written using a QWERTY keyboard.  

While performing phonetic input would simplify the input of complex Chinese character, 

such a technique would likely not benefit English text entry, as the input sequence would 

be approximately the same length. However, with the proliferation of touchscreens, users 

are now able to draw characters on the screen and have them recognized as text input.  A 

dissertation on mobile Chinese text entry was written by Liu [57] and examines these 

techniques in greater detail.  The recognition techniques used for Chinese text entry 

might help improve English handwriting or word-gesture recognition, but it would still 

require a disambiguation technique and not help with discrete, deterministic text entry 

techniques. 
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2.6 Design Rationale for MIME 

With such a variety of text entry methods, what form should an optimized, high-

performance mobile text entry technique take?  The Graffiti versus Unistrokes 

comparison by Castellucci and MacKenzie [12] demonstrates that gestures resembling 

corresponding handwritten characters are not necessarily easier to learn.  The Graffiti 

gestures were so different from the participants’ own handwriting that both gesture 

alphabets were equally novel.  An evaluation of DioPen [15] shows even a gesture 

alphabet that accommodates multiple handwriting styles can hinder performance due to 

recognition errors.  In an effort to reduce visual demand on the user, MacKenzie and 

Castellucci augmented the Graffiti input method with a corpus to automatically correct 

unrecognized and misrecognized gestures [62].  However, another revelation from the 

DioPen evaluation is that participants describe handwriting as too slow.  Even without 

having to pause for the recognizer, human handwriting speed is estimated to be 

approximately 18-30 wpm [5 (p. 287), 22 (p. 61), 115, 143 (p. 196)], well below the 

theoretical upper limit of some tapping text entry techniques. 

The Unigest technique [13] and a variation of H4 [16] by Castellucci and 

MacKenzie, as well as the unpublished TiltWriter by MacKenzie and Castellucci all use 

mid-air gestures to enter text.  Unigest maps gesture pairs to characters, H4 codes are 

mapped to gestures, and TiltWriter uses the tile of a mobile device to select characters on 

a soft keyboard.  Unfortunately, performing input with these techniques might be difficult 

in a mobile environment, such as on a bus.  The motion of the bus (e.g., starting or 
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stopping abruptly or turning sharply) could interfere with recognition of the user’s 

intended gesture.  An alternative would be to have a second sensor (e.g., accelerometer, 

gyroscope, etc.) on the user.  This second sensor would measure the motion of the 

environment and its readings could be subtracted from the device’s measurements to 

determine device-specific motions.  Another alternative would be to use the device’s 

front-facing camera to determine motion using computer vision techniques.  However, 

both of these approaches might be too complicated and resource-intensive for mobile text 

entry. 

Word path gestures (e.g., ShapeWriter) provide fluid input, but the complexity of 

the gestures might hinder performance.  For example, the touch-based H4 

implementation by Castellucci and MacKenzie [16] performed poorer than tapping H4 

keys on a gamepad.  Consequently, tapping on a soft keyboard seems like a preferred 

method for fast text entry.  In particular, input does not require a corpus of dictionary 

words. 

Although the Opti layout optimizes character arrangement, it localizes frequent 

characters at the centre of the keyboard.  Users typically hold a mobile device and tap or 

swipe with one or two thumbs.  The static position of the hand(s) along the side(s) of a 

device restricts the movement of the thumb(s) and makes some keys easier to tap than 

others.  Optimizing a keyboard layout that accommodates this restriction might 

significantly improve mobile text entry performance.  With practice, two-thumb entry 
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would be superior, but situational restrictions might prevent the user from using two-

thumbs (e.g., holding a cup of coffee in one hand). 

To determine preferred key locations, participants in a user study would be asked 

to tap a highlighted key as quickly and accurately as possible.  The task competition time 

for each key would be inversely proportional to its ease of selection.  Using a language 

model, frequent letters would be mapped to keys that are easy to select.  In a longitudinal 

study, one thumb text entry using this keyboard could be compared with using the 

established QWERTY layout. 
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Chapter 3  
Gathering Text Entry Metrics on Android Devices 

Mobile devices present countless opportunities for text entry research.  Many users are 

accustomed to rapid, accurate touch typing on a spacious desktop keyboard while seated.  

While mobile devices are small, often lack a physical keyboard, and are used “on the go”, 

they have touchscreen digitizers, cameras, microphones, and motion sensors.  These 

features allow for more text entry modalities then just pressing a key, and allow 

researchers to explore whether mobile text entry can approach desktop performance. 

3.1 Motivation 

The Android operating system by Google is very popular on mobile devices.  As of 2013, 

over 1 billion Android devices have been activated [92].  Furthermore, 62% of tablets and 

79% of smartphones sold in 2013 ran the Android OS [58, 97].  Android is currently the 

only popular mobile OS to allow third-party text entry methods2; anyone can easily 

develop and freely distribute an Android Input Method Editor (IME).  IMEs can be used 

system-wide, without modifying installed applications, and can use any hardware 

resource on the device.  For example, an IME could use the touchscreen to recognize 

handwriting (see Section 2.1), the camera for eye tracking [24], the microphone for voice 

recognition [147], or the motion sensors to determine device orientation (see Section 2.3). 

                                                 

2 Apple’s iOS 8 will support third-party keyboards by the end of 2014 [84]. 
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With so many IME options, it was necessary to develop an application to facilitate 

evaluation and comparison of existing and future IMEs – a mobile equivalent of TextTest 

[131] for the PC.  To satisfy this need, Text Entry Metrics on Android (TEMA) was 

created. 

 
Figure 33. The TEMA application (above) is available at http://www.eecs.yorku.ca/~stevenc/tema/. 

3.2 TEMA Features 

TEMA is a small (less than 250 kB) ready-made application to aid researchers gathering 

text entry metrics on Android devices.  It presents a phrase for the user to transcribe.  

Once transcribed, performance is calculated and logged, and another phrase is presented 

for transcription. 

http://www.eecs.yorku.ca/~stevenc/tema/
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TEMA measures performance using established measurements for entry speed 

and accuracy.  Entry speed is calculated by dividing the length of the transcribed text by 

the entry time (in seconds), multiplying by sixty (seconds in a minute), and dividing by 

five (the accepted word length, including spaces [143]). The result is reported in words-

per-minute (wpm).  Accuracy is evaluated according to the total error rate (TER), 

corrected error rate (CER), and uncorrected error rate (UER) metrics [107].  TER 

characterizes general input accuracy and is the sum total of CER and UER.  CER reflects 

the errors that the participant corrected during transcription, while UER reflects the errors 

that the participant did not correct.  All three error rates are reported as a percent.  These 

performance measurements can appear on screen during text input to provide feedback to 

the user.  This could be helpful if participants are instructed to reach a specific 

performance threshold.  However, they are hidden by default to prevent distractions 

during typical evaluations. 

TEMA records user actions in three logs: stats, events, and IME.  They are saved 

to the device’s internal storage and can be transferred to a PC via a USB or wireless 

connection.  The logs are in tab-delimited format and can be opened by most spreadsheet 

applications.  Each log begins with the date and time it was created, and ends with the 

date and time it was closed.  The use of “[#]” in the logs is to easily identify comments 

intended for human consumption rather than for data analysis.  The “stats” log 

summarizes entry speed, the accuracy metrics mentioned above, and intermediate 

measurements for each trial (i.e., phrase), with one trial per line.  The “input time” is the 
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time to transcribe the phrase.  Timing begins with the first input:  For a character based 

IME (e.g., QWERTY), this would be the first character, and for a word based IME (e.g., 

Swype), this would be the first word.  Input timing ends with the input of the last 

transcribed character; it does not include the time to enter the terminating newline 

character (e.g., pressing the Enter key).  Although interruptions are not recommended 

during evaluation sessions, TEMA measures the duration of interruptions (e.g., an 

incoming phone call, etc.) as “pause time”; it is not included in input time.  The “total 

time” is the time from input of the first character to input of the terminating newline 

character, including pause time. 

 
Figure 34. An example of the stats log generated by TEMA. 

TEMA also records the Minimum String Distance (MSD) [105] between the 

presented and transcribed phrases.  The MSD value represents the minimum number of 

character operations (i.e., insertion, deletion, or substitution) required to convert the 

transcribed text to the presented one.  The “numBksp” value represents the number of 
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times the backspace button was triggered, while the “numDelChars” value represents the 

number of characters deleted during transcription.  These values could be different when 

using IMEs that delete entire words with a single (long) press of a button. 

 
Figure 35. An example of the event log generated by TEMA. 
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The “event” log records low-level input.  Each line contains the timestamp of the 

event, the input, and its position in the transcribed string.  The timestamps allow for 

verification and analysis of events across logs.  For example, the last character of the 

phrase was entered at 38 950 ms, which corresponds to an input time of 38.95 sec.  In 

addition, the nearly 200 ms between the user pressing Enter and trial termination might 

give insight into device responsiveness.  The block of events for a trial begins with a 

comment containing the presented phrase and ends with a comment containing the 

transcribed phrase. 

The “IME” log records information sent directly from the IME being used.  IME 

developers can include a provided Java file in their IME package to facilitate this 

functionality.  The logged date could be high-level, such as new or technique-specific 

metrics, or very low-level, such as the screen location of individual touch events.  In the 

following example the IME being evaluated uses vertical and horizontal gestures to 

trigger the Space, Shift, Backspace, and Enter keys.  The developer is logging the 

triggered key and the x- and y-component of the gesture, in pixels.  According to the log, 

it seems that the user’s gestures were quite straight, not angled.  Again, the timestamps 

are synchronized across the logs.  Thus, it might be interesting to note that events were 

logged from the IME, and then the corresponding character was sent to the text field 

30-60 ms later. 
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Figure 36. This IME log generated by TEMA contains the x- and y-components of the gestures used 

to enter the indicated character. 

When TEMA is started, it presents an options dialog.  Here, the user can specify 

experiment parameters.  The participant number, session number, and technique code are 

used to name the log files.  In the example below, the created log files would be named 

“1_2_A_stats.tema”, “1_2_A_events.tema”, and “1_2_A_ime.tema”.  These values help 

easily identify logs, especially when there are many participants and/or sessions.  It also 

simplifies sorting the log files as input for other programs or for later analysis. 

From the dialog, the user can select the IME to use for the session.  This is handy 

if the same participants are evaluating multiple IMEs in a session (e.g., a user study with 

within-subjects design).  For security reasons, Android does not allow TEMA (or any 

application) to have direct access to an IME or for an IME to be selected 

programmatically.  Doing so would allow malicious code to swap the default IME with 

an identical-looking one that logs and transmits passwords (for example).  For the same 

reason, no program can alter IME options, such as auto-correct, audio feedback, or haptic 
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feedback.  Instead, TEMA can only trigger a separate dialog for the user to select the 

IME and configure options manually. 

 
Figure 37. Users can specify study parameters in this dialog. 

The user can specify the number of trials to be administered in this session and 

the maximum allowed UER.  Sometimes, participants in a user study will rush to 

complete a session without paying enough attention to accuracy.  This setting will reset a 

trial if its UER exceeds the set value.  The trial results will still appear as a comment in 
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the logs, but the trial counter will not be incremented.  TEMA will also display a message 

to the participant encouraging increased attention to accuracy. 

Presented phrases are taken from one of five phrase sets.  Details about the phrase 

sets are presented in Chapter 5.  Users also have the option of converting all letters to 

lowercase and/or removing numbers and punctuation from presented phrases.  These 

options are useful when evaluating entry of only words or when evaluating input methods 

that provide input of a limited number of characters. 

There is also the option to upload the session data to a server for logging.  The 

uploaded data is similar to the contents of the stats log, but also includes the mobile 

device’s unique identifier (UUID), the Android version, the display resolution and 

density, and the package name of the IME used.  The contents of the events and IME logs 

are not uploaded.  Currently, the server used is the Department’s web server.  However, 

the target Perl script can be copied to another server and its URL can be modified in the 

TEMA source code. 

Once the session has begun, the user can reveal an options menu.  The trial can be 

refreshed with a new phrase or reverted (i.e., reset).  The Help option presents users with 

instructions to transcribe the presented phrase as quickly and accurately as they can.  The 

Info option presents copyright information about TEMA.  Finally, the Exit option allows 

the user to terminate the session prematurely. 
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Figure 38. The menu provides additional options. 

3.3 TEMA Design 

Android’s huge install base and acceptance of third-party IMEs means TEMA can be 

used to evaluate a vast number of IMEs, running on a variety of mobile devices and form 

factors.  In particular, Android can change IMEs on-demand without requiring changes to 

(or even restarting) installed applications.  Consequently, TEMA remains IME agnostic.  

It monitors the transcribed text field and records the time and position of character 

insertions and deletions. 

 
Figure 39. TEMA can be used to evaluate a variety of text entry methods. 

Unfortunately, the strict separation between application and IME means that 

TEMA cannot directly communicate with just any preinstalled IME.  Low-level, 
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intermediate events that serve to input text (e.g., key presses to select a character for input 

or the path of a stylus gesture) are not available to TEMA for logging or analysis, but are 

often necessary to evaluate a text entry method.  To address this deficiency, IME 

developers (i.e., ones with access to the IME’s source code) can add the TemaImeLogger 

class to their package and use it to facilitate communication with TEMA. 

 
The TemaImeLogger class allows IME developers to send logging data to TEMA. 

The class, which is provided to all TEMA users, implements a public method that 

bundles a string, a Boolean flag, and a timestamp, then broadcasts that data using 

Android’s intent method of inter-process communication (IPC).  The string can contain 

any textual data, including multiple, tab-delimited fields.  The Boolean flag indicates 

... 
public class TemaImeLogger 
{ 
   ... 
 
   /** Initializes this object. */ 
   public TemaImeLogger(Context c) 
   { 
      context = c; 
   } 
 
   /** Writes the passed String to TEMA's IME log. The string 
    *  can contain multiple fields or represent a comment. 
    *  Non-comments will be prefixed with a timestamp. 
    *  @param s the String to write 
    *  @param isComment if true, prefixes with [#] 
    */ 
   public void writeToLog(String s, boolean isComment) 
   { 
      Intent i = new Intent(BROADCAST_TEMA); 
      i.putExtra(KEY_1, s); 
      i.putExtra(KEY_2, isComment); 
      i.putExtra(KEY_3, System.currentTimeMillis()); 
      context.sendBroadcast(i); 
   } 
} 
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whether or not the log entry should be treated as a comment.  Finally, the timestamp 

represents the moment the event was logged.  In the TEMA application a broadcast 

receiver is initialized to receive data from the TemaImeLogger class, decompose the 

bundled data, and write the transferred string to the IME log.  More complex (e.g., bi-

directional) communication could be implemented, but this simplicity ensures that 

logging does not unnecessarily burden the system, especially if the IME developer 

decides to log multiple events per character input. 

 

Broadcasts sent to TEMA are logged.  Timestamps are synchronized across all logs. 

3.4 Encouraging Consistency in Mobile Text Entry Evaluations 

The ability to evaluate text entry techniques in a consistent manner is very important.  

Such evaluations allow for meaningful comparisons between input methods and between 

studies.  Unfortunately, some published user studies differ on how entry speed and 

... 
intentFilter = new IntentFilter(BROADCAST_TEMA); 
brdcstRec = new BroadcastReceiver() 
{ 
   @Override 
   public void onReceive(Context context, Intent intent) 
   { 
      String s = intent.getStringExtra(KEY_1); 
      boolean isComment = intent.getBooleanExtra(KEY_2, false); 
      long time = intent.getLongExtra(KEY_3, 
         System.currentTimeMillis()); 
      String prefix = isComment ? "" : "" + (time - startTime) + 
         log.DELIM; 
      log.logIME(prefix + s, isComment); 
   } 
}; 
registerReceiver(brdcstRec, intentFilter); 
... 
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accuracy are measured.  Some [41, 74, 83] used the MSD metric [105]; some [21, 69, 73] 

used a character-wise metric; and some [36, 37, 78] reported the percentage of phrases 

entered correctly.  Sometimes, accuracy measures are omitted completely [32, 119, 127].  

One of TEMA’s goals is to facilitate the consistent gathering and reporting of established 

entry speed and accuracy metrics. 

This methodology has already been adopted by numerous researchers in both 

academia and industry: Amanda Smith used TEMA in her dissertation to evaluate and 

compare how young and old adults use smartphones [104]; Anju Thapa used TEMA in 

her thesis to compare novice mobile text entry performance using MessagEase and 

QWERTY [116]; advisors, such as Poika Isokoski, Erno Makinen, Janet Read, and 

Robert Teather, are using TEMA in text entry research projects with their graduate 

students; and Curtis Ray, Vice-President of Engineering at Tactus Technology Inc. is 

interested in using TEMA to evaluate the Tactus Keyboard – a touchscreen display that 

morphs into physical keys for text entry [112].  Discussions are on-going.  

Representatives from Motorola and Sprint were also interested in using TEMA to 

evaluate and market mobile phones.  They were each very impressed with TEMA, but no 

mutually beneficial agreement was reached with their respective accounting departments 

regarding licensing.  For a full list of TEMA users, see Appendix B. 

A consistent methodology for mobile text entry evaluation should be adopted and 

TEMA facilitates this.  In situations where an established convention might not suffice 
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(e.g., non-prose or non-alphabetical text entry), researchers should detail how metrics 

were calculated, so that their methods are reproducible. 

3.5 Method 

A user study was conducted to demonstrate TEMA’s utility and establish entry speed and 

accuracy measurements for the evaluated techniques. 

3.5.1 Participants 

Sixteen paid participants (ten male, six female) were recruited from the local university 

campus.  Ages ranged from 18 to 31 years (mean = 23; SD = 3.53).  Two participants 

were left-handed.  Although participants were familiar with the QWERTY layout, none 

was an expert in onscreen QWERTY keypads, handwriting, or word-gesture techniques.  

Therefore, the results are characteristic of novice, not expert, performance. 

3.5.2 Apparatus 

The TEMA application ran on a Samsung Galaxy S Vibrant (GT-I9000M) smartphone 

running Android 2.1.  The touchscreen measured 4.0 inches diagonally and had a 

resolution of 480×800 pixels.  The phone was held in portrait orientation throughout the 

study.  The phone’s wireless radios were disabled to eliminate disruptions due to 

incoming calls or text messages. 

Three of the IMEs included with the phone were evaluated with TEMA: the 

default QWERTY keypad, DioPen (handwriting, Figure 39, centre), and Swype (word-
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gesture, Figure 39, right).  For each IME, the input language was set to English (US) and 

options for auto-spacing, auto-capitalization, and word prediction were deactivated.  All 

other options were kept at default values. 

3.5.3 Procedure 

Participants entered ten phrases in each condition.  The phrases were chosen randomly 

from the “CHI 2003” phrase set [65].  They were instructed to enter text as quickly as 

possible, to correct errors if noticed immediately, but to ignore errors made two or more 

characters back.  This was to prevent deletion of many correct characters to correct an 

early mistake, which would unnecessarily increase the measured CER.  A study by Arif 

and Stuerzlinger [3] showed that recommending or requiring error correction 

significantly increased TER, but the choice of error correction strategy did not 

significantly affect entry speed. 

In the “QWERTY-thumbs” condition, the phone was held with two hands and 

participants typed with both thumbs (Figure 40, left).  In the DioPen, Swype, and 

QWERTY-finger conditions, participants held the device in their non-dominant hand and 

used a finger on their dominant hand to perform input (Figure 40, right).  Before each 

condition, participants were instructed on how to use the corresponding technique.  For 

the DioPen condition, a chart with the gesture alphabet3 was provided.  A practice 

                                                 

3 http://help.diotek.com/data/diopen/android/10/page42.html 

http://help.diotek.com/data/diopen/android/10/page42.html
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session followed, consisting of three random phrases.  Study sessions typically lasted 50 

minutes and took place in a quiet office, with participants seated at a desk. 

 
Figure 40. The above images demonstrate participants’ hand positions during the study conditions. 

3.5.4 Design 

The experiment employed a within-subjects factor, technique, with four levels: 

QWERTY-thumbs, QWERTY-finger, DioPen, and Swype.  The two-thumb QWERTY 

input condition encapsulates a popular method of mobile text entry.  The single-finger 

QWERTY condition represents an alternative QWERTY input method and allows 

comparisons with the single-finger handwriting and word-gesture input techniques. 

The order of testing was counterbalanced using a balanced Latin Square.  The 

dependent variables were entry speed and accuracy.  They were measured by TEMA (as 

detailed previously) and averaged over the ten phrases. 
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3.6 Results and Discussion 

3.6.1 Accuracy 

The TER of Swype was the lowest, at 7.0% (Figure 41).  Interestingly, an evaluation of 

ShapeWriter on a tablet PC revealed a similar TER value of 6.7% [51 (pp. 65-66)].  The 

TER of the QWERTY-finger condition was slightly higher at 7.1%.  Surprisingly, the 

QWERTY-thumbs condition was almost double that, at 13.8%.  This is considerably 

greater than the 10.4% TER measured using two thumbs on the iPhone’s QWERTY 

keypad [1].  DioPen had the worst TER, at 30.4%. In comparison, a Graffiti study 

revealed an error rate of only 19.4% [46]. 

 
Figure 41. Accuracy values gathered by TEMA. Error bars represent ±1 standard deviation of TER. 

A box plot representation appears in Appendix F. 

An Analysis of Variance (ANOVA) revealed a significant effect of technique on 

TER (F3,36 = 41.66, p < .0001).  However, Scheffé post hoc analysis indicated a 

significant difference only between DioPen and all other conditions.  Tukey, LSD, and 
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Bonferroni post hoc tests also indicated significant difference between QWERTY-thumbs 

condition and all other conditions.  Condition order had no significant effect on TER 

(F3,12 = 0.83, ns). 

DioPen’s UER of 6.4% indicates participants missed (or ignored) many errors.  

The corresponding event logs revealed multiple attempts to enter characters (i.e., 

participants entered an incorrect character, backspaced, entered the same incorrect 

character, backspaced, etc.).  This suggests participants could not reliably draw the 

required gestures.  Considering the DioPen gesture alphabet, the errors generally fall 

under three categories: incomplete loops (e.g., “c” inputted instead of “o”), incorrect 

proportions (e.g., “h” or “r” inputted instead of “n”), and poor timing (e.g., “l.” inputted 

instead of “i”).  The frequency of these errors would likely decrease with practice, as 

users perfect the accuracy of their gestures.  Alternatively, research by Arif and 

Stuerzlinger [4] suggests that, over time, users would likely switch to alternate input 

gestures if available (e.g., inputting gestures that resemble cursive script, instead of 

printing).  However, in this study, participants typically deleted the incorrect character 

and performed input again.  Most participants were frustrated by DioPen’s unreliable 

input.  One participant mentioned that DioPen was difficult to use because its gesture 

alphabet did not resemble his own handwriting.  Another participant stated, “It’s just 

easier to type [rather than write].” 
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3.6.2 Entry Speed 

The QWERTY-finger entry rate of 20.9 wpm is the fastest in this study (Figure 42).  The 

QWERTY-thumbs entry rate was just slightly lower at 20.8 wpm.  Both values exceed 

the 15.9 wpm reported for two-thumb text entry on the iPhone’s QWERTY keypad [1].  

DioPen was slowest at 7.0 wpm.  This is probably due to the high gesture misrecognition.  

A Graffiti study yielded a rate of 9.2 wpm [46].  The Swype entry speed of 16.7 wpm is 

consistent with a ShapeWriter study that reported 15 wpm [51 (pp. 65-66)]. 

 
Figure 42. Entry speed values gathered by TEMA. Error bars represent ±1 standard deviation. 

A box plot representation appears in Appendix F. 

There was a significant effect of technique on entry speed (F3,36 = 71.17, 

p < .0001).  However, there was no significant difference between the two QWERTY 

conditions.  This is surprising, as many believe two-thumb input to be a faster method of 

text entry.  This study focused on novice performance.  Perhaps expert users learn to 

better coordinate input with two thumbs, resulting in faster input.  Every other pairwise 
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comparison of techniques satisfied the 5% threshold for significance.  Again, 

counterbalancing proved effective (F3,12 = 2.34, p > .05). 

3.7 Conclusion 

The conducted study demonstrated TEMA’s utility.  Despite the perceived advantage of 

two-thumb input, there was no statistically significant difference between the two 

QWERTY conditions with respect to novice entry speed.  Word-gesture input was 

slightly slower, but not significantly less accurate.  Handwriting was both slow and error-

prone. 

In addition to gathering performance metrics, TEMA’s logs helped identify the 

source of participants’ handwriting errors.  By examining the event logs, researchers were 

able to determine that the high occurrence of character deletions was a symptom of 

spatially and temporally malformed gestures.  If the IME developer had used the 

TemaImeLogger class to record each gesture’s sample points, further analysis could 

quantify the deviation of the erroneous input gestures from the accepted gestures for each 

problematic character. 

TEMA will aid in the evaluation of the MIME keyboard.  It provides a consistent 

platform for mobile text entry research on Android devices, includes thousands of 

phrases for text entry, measures timings, calculates performance metrics, and generates 

easily viewable log files for post-study analysis.  Furthermore, it has been recognized by 

corporations in industry and is used by researchers in academia.  TEMA may be 

downloaded from the following URL: http://www.eecs.yorku.ca/~stevenc/tema/. 

http://www.eecs.yorku.ca/~stevenc/tema/
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Chapter 4  
Determining Feedback Preferences for 
Mobile Text Entry 

This chapter aims to answer three questions regarding aural and haptic feedback options 

during text entry: 1) What feedback (or combination of feedback) do users prefer and 

why? 2) Does the type of feedback affect users’ performance? 3) Does the type of 

feedback affect users’ perception of performance? 

This chapter first summarizes other research related to aural and haptic feedback 

during text entry.  Then, the survey and user study used to investigate the above questions 

are detailed.  Finally, the results are presented and discussed. 

4.1 Motivation 

Many mobile devices use touchscreens and soft keyboards instead of physical keyboards.  

This allows for a larger display without increasing the size of the device.  Furthermore, 

soft keyboards change their layout based on user input and disappear when not needed.  

To compensate for the lack of tactile feedback provided by physical keys, soft keyboards 

can include aural and haptic feedback.  The feedback takes the form of audible clicks 

from a speaker and device vibration, respectively.  However, it is important to investigate 

how feedback will affect users.  This is especially true for a commercial product, where 

success depends on user acceptance.  The use of feedback might annoy users, or cause 

decreased performance. 
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4.2 Related Work 

Existing research has investigated the effect of haptic feedback on text entry 

performance.  Some use vibration to indicate key presses, erroneous input, or to alert the 

user to input options.  Koskinen et al. [49] evaluated the effect of various forms of haptic 

feedback when entering numbers via a soft keypad.  Although the effect was not 

statistically significant, participants found vibrations of 16 ms the most pleasant.  

However, the authors state that preferences are not necessarily generalizable and might 

vary between devices.  This might explain why other studies evaluating haptic feedback 

yield conflicting results. 

Dunlop and Taylor [23] used a 75 ms vibration to indicate “helpful” word 

completions during text entry and a 150 ms vibration to signal entry of a non-dictionary 

word.  The feedback significantly improved entry speed by 3 wpm. 

McAdam and Brewster [78] also found that haptic feedback significantly 

benefitted entry speed.  A vibration of 30 ms signaled a correct key press, while 500 ms 

signaled a key slip.  The vibrations were delivered to one of six locations on the 

participant, with the upper arm and wrist performing the best.  They did not find any 

significant effect of vibration on accuracy. 

Brewster et al. [8] used a “smooth” vibration to indicate correct input and a 

“rough” one to signal errors.  Both were 800 ms in duration.  Though this gave 

participants a perceived increase in performance, the feedback had no significant effect 
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on entry speed or total error rate.  However, it significantly improved accuracy in the 

form of fewer uncorrected errors. 

Hoggan et al. [36] used 30 ms and 500 ms vibrations to signal correct input and 

errors, respectively.  They found a significant effect on both speed and accuracy.  

Furthermore, Hoggan et al. [37] used both audio and haptic feedback individually in 

noisy and moving environments and found they each improved speed and accuracy over 

the condition with no feedback.  The effect of each mode depended on the environment.  

Haptic feedback improved performance in noisy environments, while audio was better in 

high vibration environments. 

Mobile devices use less sophisticated haptic actuators than those used in the 

aforementioned research.  This is perhaps to minimized size, weight, or cost.  Thus, 

evaluating the effect of haptic feedback using an actual mobile device is valuable. 

4.3 Method 1 (Survey) 

Mobile users were polled on their feedback preferences when typing on touchscreen 

devices.  To reach a large sample of users, the following question was posted on various 

online forums that cater to mobile technology: 

Smartphones allow feedback when typing. This feedback could be audio (e.g., a “tick” 
sound from the speaker), vibration (i.e., the device shakes a little), or a combination 
of the two. What feedback do you prefer when typing (e.g., texting, emailing, etc.)? 

Participants were able to select only one of the following responses: “Audio”, 

“Vibration”, “Audio and Vibration”, or “None”.  They were also allowed to post 

comments elaborating on their choice.  Although the context of text entry was not 
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specified, it is believed that users resist changing their audio or haptic feedback settings 

based on their environment or situation – they “set it and forget it”.  This is often 

demonstrated by phones that ring during movies or lectures. 

4.4 Method 2 (User Study) 

In addition to the survey, a user study was conducted to determine the effect of a 

combination of feedback modes on mobile text entry performance. 

4.4.1 Participants 

Twelve participants (two females, ten males) with an age range of 20 to 31 years 

(mean = 26; SD = 4.1) entered text on a mobile phone.  The number of participants is 

consistent with related studies [8, 36, 37].  All participants were fluent in English and 

frequently typed on a touchscreen device. 

4.4.2 Apparatus 

The phone used for the study was a Samsung Galaxy S Vibrant (GT-I9000M), running 

Android 2.3.3.  The touchscreen measured 4.0 inches diagonally and had a resolution of 

480×800 pixels.  The audio feedback was the default key “click” sound, as defined by 

AudioManager in the Android API.  The phone’s volume was set to provide feedback 

that was clearly audible, but not intense.  An audio recording of the phone’s haptic 

feedback was created and analyzed.  The vibration was measured to be about 80 ms in 

duration. 
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For text entry, the default QWERTY keyboard was used with auto-spacing and 

auto-correction options disabled.  TEMA was used to administer phrases from the CHI 

2003 phrase set, record participant input, and calculate text entry metrics. 

4.4.3 Procedure 

Participants entered 30 phrases in each condition.  However, the first 5 phrases served as 

a warm-up and were not included in the analysis.  To eliminate variability in the task, all 

participants held the phone in a portrait orientation and entered text using their thumbs.  

Furthermore, they were instructed to enter text as quickly as possible, to correct errors if 

noticed immediately, but to ignore errors initially missed (i.e., to prevent deletion of 

many correct characters to correct an early mistake). 

Study sessions typically lasted 30 minutes and took place in a quiet office, with 

participants seated at a desk.  Participants also completed a questionnaire to elicit their 

text entry preferences and to gather demographic information. 

4.4.4 Design 

The study employed a within-subjects factor, feedback mode, with four levels: Audio, 

Vibration, Both (audio and vibration), and None.  The order of testing was 

counterbalanced using a balanced Latin Square.  Each participant entered 30 phrases (5 

warm-up, 25 experimental) in each condition, which is consistent with previous text entry 

research [36, 78].  Analysis was based on the resulting 1200 (12×25×4) trials. 
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The dependent variables were entry speed and accuracy, as calculated by TEMA. 

Entry speed was reported in words-per-minute and accuracy was measured according 

TER, CER, and UER metrics. 

4.5 Results and Discussion 

4.5.1 Survey Results 

The results of the survey appear in Figure 43 and include responses from participants in 

the user study.  A total of 92 people cast a vote indicating their preferred feedback mode 

when typing on a mobile touchscreen device.  While just over one third of respondents 

opt for only haptic feedback, almost half prefer no aural or haptic feedback at all.  The 

margin of error is 9.6% with a confidence level of 95%. 

 
Figure 43. Survey participants’ feedback preference when typing on a 

mobile touchscreen device (n = 92). 
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4.5.2 Entry Speed and Accuracy 

Entry speeds for the Audio and None conditions were identical at 29.9 wpm, with the 

Both condition being slightly higher at 30.3 wpm and Vibration being slightly lower at 

28.7 wpm (Figure 44).  Dunlop and Taylor [23] used a 12 key phone keypad for input 

and recorded a speed of 23 wpm when using vibration.  However, McAdam and Brewster 

[78] and Hoggan et al. [37] both used touchscreen keyboards and reported speeds of 

approximately 30 wpm, consistent with these results.  Unfortunately, the other studies 

measured entry speed in “time to enter phrases” or “number of lines entered”, thus 

preventing direct comparisons. 

 
Figure 44. Entry speed values gathered from this user study. Error bars represent ±1 SD. 

A box plot representation appears in Appendix F. 

The difference in entry speed between the four conditions was not statistically 

significant (F3,24 = 1.25, p > .05).  This is consistent with the findings of Brewster et al. 

[8], but differs from the findings of Dunlop and Taylor [23] and McAdam and Brewster 
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[78].  In addition, the ANOVA indicates that counterbalancing worked, as the order of 

the conditions was not significant (F3,8 = 1.53, p > .05). 

Accuracy results appear in Figure 45.  The None condition was the most accurate, 

as it yielded the lowest CER (7.0%) and TER (9.7%), respectively.  Participants 

committed (and corrected) more errors in the conditions that provided feedback.  

Evidently haptic feedback motivated participants to correct their errors.  The Vibration 

condition had the highest CER (8.1%) and the lowest UER (2.1%).  Surprisingly, the 

combination of haptic and aural feedback resulted in the highest UER (3.3%) and 

TER (10.7%).  Participants committed the most errors in the Both condition and did not 

correct them.  Unfortunately, the effect of feedback was not statistically significant for 

TER (F3,24 = 0.69, ns), CER (F3,24 = 0.94, ns), or UER (F3,24 = 1.15, p > .05).  As with 

entry speed, the group effect on accuracy was not significant (F3,8 = 3.83, p > .05). 

 
Figure 45. Accuracy values gathered from this user study. Error bars represent ±1 SD of TER. 

A box plot representation appears in Appendix F. 
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Unfortunately, the use of different accuracy metrics in related studies prevents 

accurate comparison with these results.  One study [8] measured accuracy as “total 

errors” and “number of errors uncorrected”, suggesting analogs to TER and UER metrics, 

respectively.  However, the accuracy measurements appear on the same chart as entry 

speed, with an “average score” on the y-axis rather than the expected error rate. 

Other studies reported the number of phrases entered correctly.  Unfortunately, 

this metric does not convey how many errors appeared in incorrect phrases, nor the 

number of errors corrected during input.  McAdam and Brewster [78] reported 75% to 

80% of phrases were entered correctly, with vibration having no statistically significant 

effect on accuracy.  In comparison Hoggan et al. [36, 37] reported accuracy rates from 

55% to 90% and found that feedback had a significant effect on accuracy; vibration 

improved accuracy in noisy environments, but audio was better in high vibration 

environments. 

4.5.3 Users’ Perception of Performance 

After the study sessions, participants were asked to select the feedback mode they felt 

resulted in the fastest typing and which resulted in the most accurate typing.  This was to 

investigate whether or not feedback mode had any effect on perceived performance. 

The majority of participants’ selections were evenly split between the Audio and 

None conditions for both speed and accuracy.  However, the results show that most 

participants typed fastest in the None condition, but typed most accurately in the 

Vibration condition.  Half the participants correctly identified the fastest feedback mode, 
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while only a quarter of participants correctly identified the most accurate feedback mode.  

Thus, there was a significant divide between actual and perceived performance. 

4.5.4 Users’ Preferences 

What contributes to users’ preference for one feedback mode over another?  Comments 

received by survey respondents provide insight and are summarized below. 

(Respondents’ usernames appear in parentheses.) 

University instructors understand that some mobile phone users mute their 

devices in an attempt to hide text entry activities during lecture.  However, survey 

comments suggest that, in social settings, an ethic of reciprocity might also influence the 

preference for no audio feedback.  Some users are bothered by other people’s noisy 

devices.  Thus, they choose to disable audio feedback on their own device to not disturb 

people around them. 

“Audio feedback annoys me a little when using it, and it annoys me A LOT when 
the person next to me is using it!” (Big Ang) 

“i [sic] prefer silence, no audio, no vibration, because audio will influence other 
people, while vibration will make me uncomfortable.” (jean2012) 

Seven respondents stated specifically that the sound clips used for audio feedback 

in mobile devices are “annoying”.  Others commented that the audio feedback seems 

unnatural. 

“I can't stand that fakey clicking sound.” (synaesthetic) 

“The audio feedback is often annoying; this isn't the nineteenth century anymore 
[in reference to typewriters?], and often the noises devices choose are silly.” 
(primetechv2) 
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While most respondents dislike aural feedback, many appreciate having haptic 

feedback to indicate that input to the mobile device was received. 

“I activate the haptic feedback, because it give [sic] me a sense that the phone is 
really typing.” (Felimenta97)  

Finally, one respondent turns off audio and vibration feedback in an effort to 

conserve battery power. 

“I prefer no audible or haptic feedback what so ever. To me, they are pointless 
and help eat battery life that I can be better used for programs I use.” 
(moonzbabysh) 

4.6 Conclusion 

In this user study, feedback mode had no significant effect on typing speed or accuracy.  

Some related studies conclude that feedback significantly effects speed, but not accuracy, 

while other studies that use similar feedback conclude the opposite.  These results 

highlight the disagreement on the effect of feedback on performance and raise the 

question, “Why do users prefer one feedback over another?” 

To that end, this chapter also provides insight into mobile users’ feedback 

preferences.  Almost half of users surveyed prefer no aural or haptic feedback during text 

entry.  Thus, the cost to create, evaluate, and deploy new feedback techniques might 

outweigh the benefit if few users adopt it.  Survey comments indicated that other issues, 

such as power consumption and social etiquette, also influence preferences.  To cater to 

user preferences, MIME will be designed with options to provide haptic and audio 

feedback, but not with the expectation that these features will necessarily affect text entry 

performance. 
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Chapter 5  
Compiling Phrase Sets for Mobile Text Entry 

When evaluating a text entry method (mobile or otherwise), participants in a user study 

use the method to enter presented text from a phrase set.  While copying presented text is 

not a typical real-world scenario, it serves three important purposes: 1) the duration to 

compose text is eliminated from the entry speed measurement; 2) input errors are easy to 

identify and quantify; and 3) the phrases can be selected to reflect specific, real-world 

input [67 (p. 81)].  This last point emphasizes the importance of selecting phrases from a 

corpus (i.e., a body of text used for analysis) that represents typical usage.  This chapter 

details the development of four phrase sets from three corpora that characterize mobile 

text input. 

5.1 Motivation 

Twenty years ago, SMS text messaging was just becoming popular, with an 

estimated 3 million messages being sent annually worldwide [125], and text entry was 

limited to the 12-key telephone keypad on mobile phones.  The introduction of 

smartphones and the availability of mobile Internet access has led to mobile users also 

writing emails, engaging in social networking, and using other forms of instant 

messaging.  Today, analysts estimate the annual worldwide number of SMS messages 

sent to be 6.5 trillion and the number of over-the-top (OTT) instant messages sent over 
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the Internet (e.g., using applications like WhatsApp4) to be 10.3 trillion [99].  In addition, 

Facebook has 1.01 billion active mobile users monthly [25] and Twitter has 198.9 million 

active mobile users monthly [118]. 

Research by Lyons and Clawson [59] and Kristensson and Vertanen [52] compare 

the effect of phrase sets on text entry speed.  They found only subtle differences in 

performance, but the authors emphasized that phrase sets should be “representative of the 

text that end-users are likely to write” [52].  While email communications typically have 

a grammatically correct, business-like tone, text messages and tweets are very informal 

and contain many special characters.  The established CHI 2003 phrase set for text entry 

research [65] does not capture such diversity. 

5.2 Corpora Sources 

The following corpora were selected to represent the popular mobile tasks of emailing, 

texting, and tweeting: 

EnronSent Corpus [111]:  This is a corpus representing over 96 000 email 

messages sent by Enron employees and made public by the United States Federal 

Energy Regulatory Commission during their investigation of Enron.  It contains 

approximately 13.8 million words. 

                                                 

4 http://www.whatsapp.com/ 

http://www.whatsapp.com/
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NUS SMS Corpus v2012.04.30 [19]: This corpus represents over 51 000 English 

SMS messages sent by volunteers at the National University of Singapore.  

Personal information, such as names, emails, and phone numbers were removed 

to protect the privacy of those involved. 

Illocution 10% Twitter Corpus v.20135: Illocution provides a free sub-sample 

of their Twitter Stratified Random Sample corpus.  This version contains 

approximately 1.2 million English tweets made in 2013.  There was a Twitter 

Corpus [91] published in 2010.  It comprised 97 million tweets, occupying 14 GB 

of text.  However, the authors are no longer distributing it, due to a request from 

Twitter. 

5.3 Digram Frequencies 

The twelve most frequent digrams in each of the corpora are listed in Table 2.  

The relative ordering of many digrams (e.g., “e·”, “t·”, and “·t”) is consistent between 

the corpora, but some digrams are far more popular with specific text entry tasks.  The 

double-space is the most popular digram in the email corpus, ranks 128th in the SMS 

corpus, and does not appear at all in the Twitter corpus.  The digram “·@” ranks 7th in 

the Twitter corpus, 891st in the SMS corpus, and 1311th in the email corpus.  The digram 

                                                 

5 http://www.illocutioninc.com/site/products-data.html 

http://www.illocutioninc.com/site/products-data.html
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“..” ranks 12th in the SMS corpus, 79th in the Twitter corpus, and 267th in the email 

corpus. 

Table 2. The twelve most frequent digrams in each of the corpora. 
The “·” character is used to represent the space character. 

Email  SMS  Twitter 
·· 4.57%  e· 2.36%  e· 1.71% 
e· 2.48%  t· 1.84%  t· 1.13% 
·t 1.88%  ·t 1.73%  s· 1.06% 
th 1.43%  .· 1.63%  ·t 1.05% 
s· 1.37%  in 1.24%  in 1.01% 
·a 1.37%  ·a 1.20%  er 0.87% 
t· 1.27%  ·s 1.11%  ·@ 0.82% 
in 1.20%  ha 1.10%  th 0.81% 
he 1.15%  s· 1.09%  an 0.80% 
d· 1.07%  o· 1.07%  ·a 0.78% 
on 1.02%  n· 1.07%  he 0.72% 
an 1.01%  .. 1.04%  n· 0.71% 

 
To create a corpus representative of mobile text entry, it is not sufficient to simply 

identify mobile text entry tasks (i.e., email, texting, social networking).  One must also 

estimate the proportion of one’s time allocated to each task.  A marketing report [27] 

serves to construct a text entry distribution (TED).  It estimates that text entry tasks are 

divided as follows: 44% texting, 36% social networking, and 20% email.  Given this 

TED, the digram frequencies of the three corpora were merged to calculate the digram 

and letter frequencies for the mobile corpus.  These are summarized in Table 3. 
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Table 3. The twelve most frequent digrams and characters in the Mobile corpus. 
The “·” character is used to represent the space character. 

Mobile  Mobile (ignore case, space)  Mobile (character frequency) 
e· 2.16%  in 1.22%  ·  15.97% 
·t 1.52%  th 1.19%  e 7.74% 
t· 1.48%  he 1.04%  t 6.26% 
in 1.16%  ha 0.98%  a 6.24% 
s· 1.14%  an 0.95%  o 6.05% 
·a 1.09%  er 0.88%  i 5.00% 
.· 1.07%  re 0.84%  n 4.76% 
th 1.03%  on 0.79%  s 4.22% 
·· 1.00%  ou 0.74%  r 3.97% 
he 0.95%  at 0.73%  h 3.75% 
n· 0.93%  to 0.65%  l 3.34% 
an 0.89%  ng 0.65%  u 2.42% 

 
These values will aid in the development of MIME.  The digram frequencies will 

be used to calculate the upper bound entry speed of any prospective layout.  Because shift 

and space functionality will be mapped to gestures, it is also necessary to determine the 

most frequent digrams (ignoring letter case) that do not contain the space character.  This 

data will determine which letter pairs have priority in the character arrangement process. 

Character frequencies will also be used to determine prospective keyboard layouts using 

an alternative process. 

5.4 Selection of Phrase Sets 

For the email, SMS, and Twitter corpora, wrapped lines were concatenated, phrases were 

extracted (one per line), and metadata (e.g., message date, time, and location) was 

discarded.  To achieve an average phrase length close to that of the CHI 2003 phrase set 

(28.6 characters), phrases longer than 35 characters were discarded.  In addition, 
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non-English phrases were discarded.  This was accomplished by filtering out any phrase 

that contained characters not available on a standard US QWERTY keyboard. 

The phrases were also checked for inappropriate content (e.g., profanities, sexual 

content).  The phrases were filtered against a list6 of “bad words” provided to web 

administrators to filter content.  However, several iterations of filtering were required.  

After each iteration, the filtered phrases would be manually scanned for inappropriate 

content.  Words deemed inappropriate would be added to the list for the next iteration.  A 

subsequent, manual scan was then performed to remove any remaining non-English 

phrases and to remove phrases with personal information (e.g., “Amy’s number is 415-

555-1234”).  In addition, personal Twitter handles (i.e., usernames) were truncated to 

protect the person’s online identity.  As a result of this filtering, each corpus was reduced 

to 700-1000 phrases. 

For each corpus, tens of thousands of 500-phrase sets were randomly generated 

and analyzed for their letter frequency distribution.  Again, that value was chosen to 

mimic the CHI 2003 phrase set.  The set with the highest correlation with the original, 

unfiltered corpus was selected as its representative.  All three of the resulting phrase sets 

are highly correlated with the original corpora, with coefficients greater than .98.  In 

addition, the average length of a phrase ranges from 28 to 30 characters.  For more details 

of the phrase sets and a sample of the phrases, see Appendix C. 

                                                 

6 http://code.google.com/p/badwordslist/downloads/detail?name=badwords.txt 

http://code.google.com/p/badwordslist/downloads/detail?name=badwords.txt
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The Enron corpus has been previously used to generate phrase sets.  Paek and 

Hsu [85] created phrase sets from Enron, Facebook, and Twitter sources, but only the 

Enron-based phrase set was made publicly available.  Although it too contains 500 

phrases, they all contain just four words7 each.  Vertanen and Kristensson [120] also used 

the Enron corpus.  Like the email phrase set described in this chapter, phrases were 

chosen to be representative of the corpus’s digram frequency.  However, the set contains 

fewer entries, totalling 320 phrases. 

The Email, SMS, and Twitter phrase sets described in this chapter were added to 

TEMA, joining the existing CHI 2003 entry.  These new sets provide phrases for 

transcription that include the punctuation, numerals, and special characters typically used 

in mobile text entry scenarios.  The Mobile “phrase set” is also an option, but is generated 

dynamically.  Phrases are selected from the other three mobile text entry phrase sets with 

the weighted probabilities in the TED.  This allows future updates to TEMA to adjust the 

percentages within the TED to reflect changing mobile usage habits. 

5.5 Conclusion 

In addition to augmenting the features of TEMA, the generation of the mobile corpus has 

the added benefit of providing digram frequency data for the development of MIME.  

The data summarized in this chapter will be used to determine an optimized character 
                                                 

7 Here, a “word” represents a tokenized string of characters which vary in length, not the accepted 

definition of five characters including spaces. 
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arrangement.  The inclusion of typical punctuation, numerals, and special characters is 

important, as the placement of those characters (as well as the letters of the alphabet) will 

be optimized. 
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Chapter 6  
Evaluating One-Handed Target Selection Times on a 
Mobile Touchscreen 

In order to optimize mobile text entry, it is important to capture both the mental and 

physical components of the task.  The previous chapter provides phrase sets that model 

text composition.  This chapter provides a model of the motor actions performed. 

6.1 Motivation 

Grasping a mobile device anchors the position of the user’s hand(s).  The user’s range of 

input is further restricted by the physiology and range of motion of our thumbs.  A patent 

filed by Microsoft describes using sensors in a tablet’s bezel to determine the user’s grip 

[76].  The position of UI elements, such as a keyboard, could then move to be easily 

reachable.  Similarly, a patent filed by Samsung describes the dynamic rearrangement of 

UI elements to fit the reach of user’s thumb [77].  As with the MIME keyboard, both of 

these approaches aim to make UI elements (specifically keyboard keys) easier to select.  

However, to determine the location for easy-to-select keys, selection time data is needed.  

Previous research has gathered selection time data on mobile devices, but under 

different conditions.  Perry and Hourcade [90] conducted a study to gather selection time 

data for 25 targets placed in a grid encompassing the entire screen.  Their study seems 

more applicable to general icon or button selection, rather than typing in particular.  

Twenty-five targets are insufficient to discretely map all the characters of the English 
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alphabet on a keyboard.  In addition, a keyboard typically would not occupy the entire 

screen.  A methodology more focused towards text entry is required. 

Hughes et al. [90] gathered selection time data for a 30-key grid representing the 

text entry region of a mobile device.  However, selections were made using a stylus.  

Thumb input will be the intended interaction for the MIME keyboard.  Although a stylus 

allows for greater precision than the tip or pad of one’s thumb or finger, using one’s 

thumb facilitates peripheral-free text entry.  This chapter gathers selection time data using 

a modified version of Hughes et al.’s methodology. 

6.2 Method 

A study was conducted to determine the speed with which participants can perform swipe 

gestures and select targets in various regions of the touchscreen.  This data will facilitate 

the assignment of frequent characters to keys that can be selected the fastest. 

6.2.1 Participants 

Twenty-four paid participants (10 male, 14 female) were recruited from the local 

university campus.  Ages ranged from 18 to 34 years (mean = 23.5, SD = 4.5) and two 

participants were left-handed.  Participants had to be frequent users of a mobile 

touchscreen device and send more than the average of five texts per day [11].  As a 

group, the participants sent an average of 62 messages per day. 
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6.2.2 Apparatus 

The study used a Nexus 4 smartphone running Android 4.4.2 and custom software to 

administer trials and capture user touch events.  The display measured 4.7 inches and had 

a resolution of 768×1280 pixels.  The Home and Recent Apps navigation buttons at the 

bottom of the screen could not be disabled, so they were covered with heavy-weight 

paper secured with tape to prevent accidental activation during study sessions.  In 

addition, the phone’s wireless radios were disabled to eliminate disruptions due to 

incoming calls, text messages, or network activity. 

Two applications were written specifically for the study.  The first (Figure 46, 

left) presented an arrow indicating the direction participants should swipe.  The second 

(Figure 46, right) presented buttons in a 6×5 grid that reached the left, right, and bottom 

borders of the screen.  This region represents the typical location for an IME.  A button 

near the top of the screen allowed participants to pause the session on demand (e.g., due 

to distraction or fatigue).  Pressing the button again would restart the last trial, discarding 

any data from the interrupted trial.  The software logged all touch events on the button 

grid, as well as timing data for all successful target selections. 
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Figure 46. The applications used to measure swipe (left) and selection (right) times. 

6.2.3 Procedure 

Participants were first asked to perform swipes in the indicated direction as quickly as 

possible.  The order of the directions was random, without replacement.  After ten swipes 

in the correct direction, there was a one-second pause before the next direction was 

presented.  The task was repeated for the other hand. 

Participants were then presented with an array of 30 targets, similar to Hughes 

et al. [40].  In each trial, a pair of targets was highlighted.  The first target was 

highlighted light green with the label “1”, while the second target was highlighted dark 

green with the label “2”.  If the first and second target represented the same button, it was 
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highlighted light green with the label “*”.  Participants selected the first target, followed 

immediately by selecting the second target.  Once successfully selected, a target would 

return to its normal appearance.  Each trial was separated by a 200 ms pause and the 

application automatically paused and prompted the participant to “take a break” after 

every 100 trials.  All pairwise combinations of the 30 keys were administered in a 

random order without replacement, leading to a total of 900 trials in a block.  A block 

was administered once for each hand.  Participants held the Nexus 4 in portrait 

orientation using one hand and selected targets using the thumb of the same hand (Figure 

47).  The study sessions took place in an office setting, with the participant seated at a 

desk.  Study sessions lasted approximately 50 minutes. 

 
Figure 47. The above image demonstrates the hand position used during the study. 

Participants completed a questionnaire to gather demographic information, 

feedback about the interaction task, and measurements for each hand.  In keeping with 
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other studies, measurements included hand length from the tip of the third finger (middle 

finger) to the wrist crease [6, 44], thumb length from the tip to the joint at the base [6, 44, 

45, 90], thumb circumference around the joint closest to the tip [6, 44, 45, 90], and thumb 

width at the base of the finger nail.  Participants’ hands were measured using the figure-

of-eight method [9] and also categorized “XS”, “S”, “M”, “L”, or “XL” based on their 

measured unisex glove size.8  Measurements were taken with a plastic tape measure. 

 
Figure 48. Measurements were taken for: a) hand length; b) thumb length; 

c) thumb width; and d) thumb circumference. 

                                                 

8 http://www.glove.org/Modern/glovemeasure.php 

http://www.glove.org/Modern/glovemeasure.php
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Figure 49. Specifically, the Pellecchia [88] technique for the figure-of-eight measurement was used, 

which starts at the ulnar side of the wrist (away from the thumb).  The Maihafer et al. [70] technique 
is similar, but starts at the radial side of the wrist (near the base of the thumb) and follows a 

mirrored path. 

6.2.4 Design 

This study employed a within-subjects factor design, input hand, with levels left and 

right.  Hand size was a between-subjects factor, with levels XS, S, and M.  The number 

of participants with larger hand sizes was insufficient for statistical analysis.  In addition, 

the order of testing was counterbalanced, with one left-handed participant in each group.  

For the first task, the dependent variables were swipe duration (in milliseconds) and 

swipe length (i.e., the length of the gesture, in pixels).  For the second task, the dependent 

variable was selection time (in milliseconds).  This was calculated as the duration 

between selection of the first target and selection of the second target. 

6.3 Results and Discussion 

Table 4 summarizes the hand measurements of all the participants, averaged by hand 

size.  The effects of different hand sizes are discussed subsequently. 
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Table 4. This table summarizes mean (and SD) measurements in millimeters for a) hand length, b) 
thumb length, c) thumb width, d) thumb circumference, and e) figure-of-eight. 

*The L and XL groups had only one participant each. 

Size Left: a b c d e Right: a b c d e 
XS 170.1 

(4.4) 
56.0 
(2.7) 

15.9 
(1.7) 

55.1 
(2.7) 

371.9 
(8.4) 

169.2 
(4.2) 

56.3 
(3.3) 

16.0 
(1.7) 

55.0 
(2.8) 

378.7 
(7.9) 

S 180.0 
(3.9) 

58.1 
(3.6) 

17.3 
(1.3) 

58.1 
(2.7) 

397.9 
(8.0) 

179.0 
(5.5) 

58.4 
(4.5) 

17.7 
(1.3) 

59.4 
(2.3) 

401.6 
(6.6) 

M 188.7 
(7.4) 

60.5 
(2.9) 

19.3 
(1.0) 

64.0 
(3.7) 

427.3 
(13.4) 

189.5 
(7.9) 

65.2 
(3.4) 

20.2 
(0.8) 

65.5 
(3.2) 

433.7 
(15.0) 

L* 193 68 21 67 445 191 68 20 65 445 

XL* 210 71 23 75 484 203 77 22 74 498 
 

6.3.1 Selection Time and Patterns 

ANOVA showed the effect of input hand on selection time was significant (F1,22 = 11.39, 

p < .005) with an observed power of .90.  On average, right hand input was 14.7% faster 

than left hand input.  Unfortunately, the small number of left-handed participants (n = 2) 

made it impractical to determine if handedness had an effect.  However, one cannot 

assume that input is necessarily faster with one’s dominant hand.  Selection times for 

three right-handed participants were faster in the left-hand condition, while the two left-

handed participants were faster in the right-hand condition.  In addition, counter 

balancing worked (F1,22 = 3.15, p > .05), as there was no apparent asymmetric skill 

transfer. 

There was only one participant in each of the L and XL hand size groups.  

Because this is insufficient for statistical analysis, they were identified as outliers.  Thus, 

the remaining 22 participants were used to analyze the effect of hand size.  ANOVA 

requires that data approximately match a normal distribution.  The Shapiro-Wilk test for 
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normality was chosen because of its power with small sample sizes [95].  It showed the 

data in the M group significantly deviated from a normal distribution (p < .05).  To 

correct this, the data in all three groups was transformed using a logarithmic function and 

the ANOVA was conducted on the transformed data.  The effect of hand size on selection 

time was significant (F2,19 = 4.88, p < .05) with an observed power of .74.9  Tukey, 

Scheffé, LSD, and Bonferroni post hoc tests all indicated significance only between the 

XS and S groups.  On average, participants in the XS group performed 43.3% slower than 

those in the S group.  This is interesting, as the difference in hand measurements between 

the XS and S groups is smaller than the difference in hand measurements between the S 

and M groups (Table 4).  In particular, the average difference in thumb length between 

the XS and S groups is only 2.1 mm for both hands.  Between the S and M groups, the 

difference is 6.8 mm for the right hand, and 2.4 mm for the left hand.  Perhaps the S 

group measurements represent the lower-bound hand size for easy operation of a 

smartphone of that size.  It would be interesting to investigate how many smartphone 

users deem that size too big.  Subsequent popular smartphone models are larger than the 

Nexus 4, so it would seem that device manufacturers see a sufficient market for 

smartphones with touchscreens exceeding 5 inches in size.  Still, the new smartphones 

are drawing the ire of technology writers, who see the new large sizes as too big for the 

average person’s hand (approximately 180 mm) [122]. 

                                                 

9 Performing the analysis on the original data yielded a similar result (F2,19 = 4.71, p < .05), power .72. 
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The selection times for each key were averaged.  A visualization of this data 

appears in Figure 50.  As with Perry and Hourcade’s study [90], the corner regions were 

selected the slowest.  Average selection times ranged from 197 ms to 789 ms, which is 

slower than the 147-330 ms range from Hughes et al. [40].  Participants were required to 

successfully select each highlighted key before the next target was made active (i.e., 

ready to be selected).  However, all touch events made when a target was active were 

logged for analysis.  Figure 51 shows two interesting examples of key selection. 

  
Figure 50. Keys are coloured to show the average selection time for left-hand input (left) and 

right-hand input (right).  The centre image represents the average of the two conditions. 

  
Figure 51. Blue dots represent successful selections of that key; red dots represent misses. 
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In the left image, almost all of the touch events are on the key.  Misses mainly 

occur vertically or horizontally adjacent to the key, close to the middle of its border.  All 

touch events on or around the key tend to slightly favour the bottom edge.  These 

findings are similar those of Henze et al. [34], who gathered touch events on a QWERTY 

soft keyboard.  In their study though, the keyboard keys were narrower and touch events 

were more concentrated towards the centre of the key.  However, touch events for the 

keys on the bottom row tend to favour the top edge of the key.  Events for corner keys 

favour the edges towards the centre of the keyboard, as depicted in the right image.  

Again, misses usually occur vertically or horizontally, but not diagonally.  Participants 

often remarked that keys along the edges and at the corners were the most difficult to 

select.  In the right image, one can also see a collection of touch events along the right 

edge of the screen.  This is likely evidence of the base of one’s thumb touching the screen 

as one stretches to reach the target.  Both images use touch events from both left-hand 

and right-hand input conditions. 

6.3.2 Swipe Time and Length 

Data gathered from the swipe task will be used to model gesture input of shift, space, 

backspace, and enter keys.  Swipe durations will be used to calculate an entry speed 

prediction, while swipe lengths will be used to determine minimum thresholds for the 

gestures.  A summary of both duration and length data appears in Table 5. 
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Table 5. The mean (and SD) of swipe duration and gesture length for left- and right-hand input. 

Direction Duration (in ms) Length (in pixels) 
 Left Right Left Right 

Down 141.3 (71.9) 115.7 (44.4) 136.8 (97.9) 122.5 (88.8) 
Left 134.8 (56.4) 131.6 (53.8) 166.1 (100.9) 145.0 (81.4) 

Right 152.5 (76.2) 114.3 (43.1) 135.6 (74.1) 140.4 (101.4) 
Up 140.3 (68.9) 122.5 (65.7) 132.0 (81.1) 115.5 (75.5) 

 
The effect of input hand on swipe duration was significant (F1,22 = 7.43, p < .05), 

with an observed power of .74.  Furthermore, the effect of hand size on swipe duration 

was also significant (F2,19 = 3.73, p < .05), with an observed power of .61.  Tukey, 

Scheffé, LSD, and Bonferroni post hoc tests were conducted, but only the LSD procedure 

showed significance, and that was between XS and both other groups.  The XS group was 

40.3% slower than the S group and 47.2% slower than the M group.  Participants would 

likely find the Nexus 4 and most new smartphones too big and cumbersome.  As with the 

selection task, the order of the conditions was not significant (F1,22 = 2.63, p > .05).  With 

regards to swipe length, input hand (F1,22 = 2.49, p > .05), hand size (F2,19 = 1.19, 

p > .05), and condition order (F1,22 = 1.20, p > .05) had no significant effect. 

6.4 Conclusion 

Participants in the XS group took significantly longer to perform the swipe and selection 

tasks, likely due to the size of the device.  In general keys at the corners of the layout 

were the most difficult to select, but this was expected.  The gathered swipe and selection 

times represent the final components required to design the MIME keyboard. 
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Chapter 7  
Optimizing a Keyboard Layout for Mobile Text Entry 

This chapter presents the generation and evaluation of the MIME keyboard.  Characters 

are assigned to keys based on their digram frequency in a corpus of mobile text entry 

activities (Chapter 5) and key selection times (Chapter 6).  In addition, the input method 

will provide options for haptic and aural feedback to accommodate users’ preferences 

(Chapter 4).  Finally, MIME will be evaluated using TEMA (Chapter 3). 

7.1 Motivation 

The QWERTY layout lends itself well to two-handed text input on tablets and 

smartphones held in landscape orientation, as the division of responsibility for the left 

and right hands carries over from desktop touch typing.  However, one handed (one 

thumb) text entry is needed when the user’s other hand is occupied (e.g., holding a 

coffee, bag, or umbrella).  If the user is mobile, one handed operation of the smartphone 

allows the other arm to swing freely, which benefits locomotion efficiency and gait 

stability [80]. 

Existing research [83] has looked at optimizing two-handed typing on a tablet, 

and word gesture techniques (e.g., Swype) have improved one-thumb text entry using the 

QWERTY layout.  Related work (detailed subsequently) have non-QWERTY layouts 

optimized for stylus input, but unlike MIME, they do not consider the ergonomics of 

thumb movement. 
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7.2 Related Work 

The general layout of the MIME keyboard is 30 keys arranged in six columns and 5 rows.  

This layout is also shared by other soft keyboards.  The Opti II [64] layout rearranges 

characters so that frequent trigrams are located on adjacent keys in the centre of the 

keyboard.  Because of the high frequency of the space character in text entry, four keys 

on the layout can input that character.  Fitaly (www.fitaly.com) also arranges frequent 

characters in the centre of the keyboard, but uses two oversized keys for the space 

character.  The unnamed layout designed by Hughes et al [40], (herein referred to as 

“Hybrid Ant”) gathered movement time measurements for stylus tapping and mapped 

frequent digrams to quickly selectable key pairs. 

 
Figure 52. The Opti II (left), Fitaly (centre), and “Hybrid Ant” (right) layouts, after [40]. 

7.3 Layout Generation 

The challenge of optimizing a keyboard layout is a difficult one to solve.  Optimization 

problems are common in Computer Science.  One called the quadratic assignment 

problem (QAP) [48] is described informally as follows:  A set of n facilities must be built 

in n locations.  Each pair of locations has a “distance” between them, and each pair of 

facilities has a “flow” of materials between them.  Consequently, the cost of transporting 
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goods between two facilities is a function of their distance and flow.  The problem is to 

build facilities in locations, such that the overall cost of transporting goods is minimized. 

Similarly, the keyboard optimization problem (KOP) can be described as a 

reduction of the QAP:  A set of n characters must be assigned to n keys.  Each pair of 

keys has a movement time between them, and each pair of characters (digram) has a 

frequency (within the corpus).  The cost of entering a digram is the movement time 

between the two corresponding keys, multiplied by the digram’s frequency in the corpus.  

The problem is to assign characters to keys, such that the time to enter the corpus is 

minimized.  Indeed, approaches to the QAP have been used to generate optimized layouts 

for typewriters [10]. 

Unfortunately, Sahni and Gonzalez showed that the QAP is NP-hard10 [98].  

Thus, so too is the KOP.  Evaluating every permutation of character assignment has a 

running-time complexity of O(n!).  For the English alphabet (26 letter, plus space), that 

equates to more than 10.9 octillion character arrangements! 

However, there are alternatives to an exhaustive search.  The derivation of OPTI 

is described as “trial-and-error” using key-to-key movement time [69], while the 

Metropolis keyboard is based on a method used to search for the minimum energy state 

                                                 

10 Some describe the QAP (or similar optimization problems) as NP-complete.  However, an optimal 

solution to the QAP cannot even be verified in polynomial time, so the problem is NP-hard, not 

NP-complete [93]. 
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in statistical physics [144].  Fitts’ law [29] was used to predict movement times for OPTI 

and was used as an energy analogue for Metropolis.  A genetic algorithm was used to 

produce slightly optimized variations of OPTI and Metropolis [94].  In a genetic 

algorithm, a set of candidate solutions are evaluated.  The candidates that perform better 

are combined to form the next set of candidates.  This process continues until a candidate 

achieves the desired performance, or until repeated generation of new candidates fails to 

produce candidates with significantly increased performance.  The Hybrid Ant keyboard 

used an ant colony optimization algorithm, which searches for a solution by simulating 

how an ant colony uses pheromones to search for food.  As ants find paths to food, more 

successful paths have higher levels of pheromones and are more likely to be followed by 

other ants.  In this metaphor, an ant’s successful path to find food represents a fast path 

across a keyboard to enter the corpus. 

For MIME, it was decided to solve the KOP for a subset of the English alphabet, 

representing the most frequent letters, and then incrementally add characters in an 

optimal way to complete the layout.  Sixty-nine characters were considered for the 

layout.  This corresponds to the number of unique characters in the Mobile corpus, 

ignoring letter case (the shift modifier is mapped to an upward swipe gesture) and the 

space character (which is mapped to a rightward swipe gesture).  The general design for 

the MIME keyboard involves 60 characters, assigned to 30 keys.  Thirty primary 

characters appear on the Alpha layout and are inputted by tapping a key.  Thirty 

secondary characters appear on the Beta layout and are inputted by pressing a key for 
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short (e.g., 500 ms) duration.  Consequently, nine characters would be left out of the 

layout.  Character priority was based on digram (not letter) frequency in the corpus, as 

selection times are based on key pairs.  To ensure the layout accommodates the most 

frequent digrams, both characters in each digram must be included in the layout.  Layouts 

were evaluated by calculating an entry speed based on the corpus and the gathered key 

selection times, averaged for both left- and right-hand conditions.  The results from both 

conditions were averaged, because some users might perform faster with their non-

dominant hand (as some participants did). 

The first subset of characters, S1, consisted of the 12 letters comprising the 16 

most frequent digrams of the corpus.  Those letters (i, n, t, h, e, a, r, o, u, g, m, and s) 

represent 54.5% of the corpus.  They were assigned to the 12 keys in the middle of the 

keyboard (which also had the fastest selection times) by calculating an entry speed for 

each of the approximately 479 million permutations.  On a whim, the same process was 

performed using the 12 most frequent letters, based on letter (not digram) frequency.  

However, none of the approximately 479 million permutations yielded a better solution. 

Initially, a greedy algorithm was used to assign the next 18 most frequent 

characters (subset S2).  That is, each subsequent character was systematically evaluated 

on every available key and assigned to the one that corresponded to the highest entry 

speed.  However, a greedy approach sometimes fails to find a solution that is globally 

optimal.  To address this, approximately 422 million random permutations of S2 were 
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evaluated.  The one with the highest entry speed (higher than the greedy solution) was 

selected, thus completing the Alpha layout. 

Some of the remaining characters have a semantic association.  This is especially 

true for numerals (subset S3), as they have an associated order.  First, the numeral zero 

was optimally assigned to the Beta layout.  The numerals 1-9 were then assigned, 

mimicking layout of the numeric keypad found on most QWERTY keyboards.  The next 

20 most frequent characters (subset S4) were arranged using a greedy algorithm.  

Interestingly, the resulting layout had associated characters (e.g., <>, ()) in adjacent or 

nearby keys.  Although the + character occurs slightly more frequently than ^ in the 

corpus, the ^ character was included in S4 to facilitate entry of smilies in the SMS and 

Twitter phrase sets.  The detriment to entry speed was negligible, at less than 0.01 wpm.  

The remaining characters in the corpus comprise subset S5. 

Table 6. The subsets of characters in the MIME layout. 

Subset Characters Location 
S1 i n t h e a r o u g m s Alpha 
S2 . l c v y w b f d k p ! : / j ' x , Alpha 
S3 0-9 Beta 
S4 q * _ - ? ) @ z ( > = < ~ # & " % $ ^ ; Beta 
S5 | \ + { } [ ] “Sym” submenu 

 
Approximately 422 million random permutations for the Beta layout were 

evaluated and compared to the greedy solution, but none yielded a faster layout.  The 

completed MIME keyboard is the result of evaluating over 1.8 billion layout 

permutations and appears in Table 7. 
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Table 7. The generated MIME character arrangement. 

Alpha Layout Beta Layout 
, y d l b x 
j u o e r . 
f m n t s p 
' g i a h / 
! v k c w : 

^ < > ? = % 
~ q * 7 8 9 
& @ _ 4 5 6 
" z – 1 2 3 
; # ( 0 ) $ 

 
Using the Mobile corpus and the data from the key selection time experiment, the 

estimated entry speed of the MIME layout is 30.3 wpm.  At first glance, this seems to be 

lower than the entry speeds quoted for Opti II, Fitaly, and Hybrid Ant.  However, these 

input methods provide only for input of far fewer characters.  By evaluating input of only 

27 characters (alphabet, plus space) and using the selection time data from Chapter 6 to 

evaluate the other techniques, the estimated entry speed of MIME becomes the fastest 

(Table 8).  The discrepancy between estimated and quoted speeds can be attributed to the 

authors using theoretical timing values, a specific input phrase, and different empirical 

timing values. 

Table 8. A comparison of entry speeds. 

Technique Entry Speed 
MIME 30.3 wpm 

MIME (27 characters) 34.9 wpm 
OPTI II (27 characters) 34.4 wpm (42.4 wpm quoted [64]) 
Fitaly (27 characters) 33.7 wpm (58.9 wpm quoted11) 

Hybrid Ant (27 characters) 33.5 wpm (65.3 wpm quoted [40]) 
 

The fully-implemented MIME IME appears in Figure 53.  Keyboard keys are 

slightly smaller than those in the key selection experiment.  There, the keys were 

                                                 

11 www.fitaly.com/domperignon/domperignon4.htm 

http://www.fitaly.com/domperignon/domperignon4.htm
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designed to cover a large area of the screen and measured 128×120 pixels.  With MIME, 

the keys are made smaller (approximately 115×102 pixels12) to move input away from 

the difficult-to-reach edges and corners.  Specifically, the base of the user’s thumb is less 

likely to activate a key by accident (see Figure 51, right). 

 
Figure 53. The fully-implemented MIME IME. 

The decrease in size also allowed an added row of keys.  Based on preliminary 

feedback, it was decided to add keys to supplement the gestures for shift, space, 

backspace, and enter by providing explicit keys for this otherwise hidden functionality.  

These would provide more explicit input options to those completely unfamiliar with 

MIME’s gesture recognition functionality.  The bottom row also contains keys for IME 

preferences, such as settings for audio and haptic feedback (see Chapter 4), the colour of 

the Beta layout characters, and the hold duration threshold to activate the Beta layout.  

                                                 

12 To accommodate various screen sizes, a key measures 15% of screen width, by 8% of screen height.  
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The default hold duration threshold is set at 300 ms to mimic that of Google’s Android 

(QWERTY) keyboard.  The “Sym” key displays a popup menu to select additional 

characters for input.  Currently, this menu contains S5, the subset of characters not 

included in the Alpha or Beta layout.  This menu can be augmented with additional 

characters (e.g., accented letters, emoji) to facilitate additional input. 

7.4 Method 

A longitudinal study was conducted to determine how users’ text entry performance 

using MIME improves over time. 

7.4.1 Participants 

Six paid participants (4 male, 2 female) were recruited from the local university campus.  

This number of participants is consistent with (or exceeds) other longitudinal text entry 

studies [41, 42, 81, 82, 121, 133].  Ages ranged from 24 to 33 years (mean = 29.7, 

SD = 3.4) and all participants were right-handed.  Participants had to be frequent users of 

a mobile touchscreen devices and send more than the average of five texts per day [11].  

As a group, the participants sent an average of 15 messages per day. 

7.4.2 Apparatus 

A series of identically configured Nexus 4 smartphones running Android 4.4.2 were used 

for this study.  The MIME keyboard was installed on them and TEMA was used to 
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administer trials from the Mobile phrase set and gather data.  Google’s standard 

QWERTY keyboard was pre-installed on all the devices. 

For the QWERTY keyboard, options for spell checking, auto-capitalisation, auto-

correction, word-suggestions, and word gesture typing were all disabled.  Options for 

audio and haptic feedback were disabled for both the QWERTY and MIME IMEs. 

7.4.3 Procedure 

For each condition, participants entered five blocks of ten phrases.  The first block served 

as a warm-up, which is consistent with previous text entry research [66].  This continued 

for ten sessions.  Participants held the smartphone in their right hand and entered text 

using their right thumb.  They were instructed to enter text as quickly as possible, to 

correct errors if noticed immediately, but to ignore errors made two or more characters 

back (i.e., to prevent deletion of many correct characters to correct an early mistake).  

Furthermore, participants were encouraged to take a break between phrases, if needed. 

Participants’ demographic information and hand measurements were recorded 

prior to the first session.  At the end of the first and last sessions, participants completed 

NASA TLX questionnaires to gather feedback about the input techniques. 

Participants completed sessions at their convenience, subject to the following 

restrictions: 1) Wait at least two hours between sessions.  2) Do not exceed two sessions 

per day.  3) Do not exceed two days between sessions.  These restrictions are consistent 

with those of other longitudinal text entry studies [20, 41, 141]. 
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7.4.4 Design 

The study employed a within-subjects factor, technique, with two levels: MIME and 

QWERTY.  Session was a between-subjects factor, with levels 1 to 10. Similar to a 

previous study [69], the order of the techniques was counterbalanced and also alternated 

between sessions.  For odd-numbered participants, odd-numbered session proceeded 

QWERTY-MIME, while even-numbered sessions proceeded MIME-QWERTY. For 

even-numbered participants, the order was reversed.  All participants received a chart to 

track their progress and remind them of condition order.  Each session consisted of two 

conditions.  Each condition consisted of five blocks of ten phrases.  The first block served 

as a warm-up, so analysis was based on the resulting 4800 (6×10×2×4×10) trials. 

The dependent variables were entry speed and accuracy, as calculated by TEMA. 

Entry speed was reported in words-per-minute and accuracy was measured according 

TER, CER, and UER metrics. 

7.5 Results and Discussion 

The participants had a mean (and SD) hand length of 188.0 mm (14.5), thumb length of 

61.0 mm (4.5), thumb width of 18.8 mm (0.8), thumb circumference of 61.0 mm (6.3), 

and figure-of-eight measurement of 418.7 mm (36.6).  One participant was classified as 

an XS glove size, two as S, two as M, and one as L.  The entry speed and error rate 

values are summarized and illustrated in this section.  The values for each participant, 

including means and standard deviations appear in Appendix E. 
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7.5.1 Entry Speed 

ANOVA requires that the data being analysed not diverge significantly from a normal 

distribution.  A Shapiro-Wilk test showed that the entry speed data (Figure 54) satisfied 

this requirement (p < .05).  ANOVA showed layout had a significant effect on entry 

speed (F1,4 = 103.84, p < .0005), with QWERTY performing faster than MIME.  

Although the MIME entry speed did not surpass that of QWERTY during the ten 

sessions, its performance (Figure 54) shows substantial improvement and potential.  In 

addition, session had a significant effect on entry speed (F9,36 = 10.08, p < .0001) and the 

layout × session interaction effect was also significant (F9,36 = 11.21, p < .0001).  The 

QWERTY entry speed remained relatively steady, averaging 23.3 wpm throughout the 

study, while MIME entry speed started at 10.0 wpm and increased to 17.2 wpm.  Counter 

balancing worked, as the group effect was not significant (F1,4 = 0.29, ns). 

 
Figure 54. Entry speed measured in wpm for the ten user study sessions. 
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The duration of the QWERTY component ranged from 18.6 minutes in session 

one to 15.1 minutes in session ten, for an average of 16.4 minutes.  Because of the 

novelty of MIME, participants initially took far longer to complete a session.  The 

duration of the MIME component started at 84.1 minutes in session one and quickly 

decreased, ending at 22.4 minutes in session ten, for an average of 33.0 minutes.  

Figure 55 shows QWERTY and MIME entry speed performance extrapolated to 55 

sessions.  MIME performance crosses over and surpasses QWERTY performance by the 

45th session.  By also extrapolating the duration of the MIME component for each 

session, one can estimate that the crossover will occur shortly after 12 hours of practice. 

 
Figure 55. QWERTY and MIME entry speeds, extrapolated to 55 sessions. 

The crossover occurs by session 45. 

After approximately 330 minutes (5.5 hours) of practice, MIME’s entry speed 

trails far behind the 45 wpm that Opti participants achieved after 400 minutes of practice 

[69] and the 23 wpm that VirHKey participants reached after 7 hours of use [73].  

However, MIME performs better than Hex, with which participants reached 12 wpm after 
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30 hours of use [127].  The technique KALQ achieved 37 wpm, but required using two 

hands and 13-19 hours of practice. 

7.5.2 Accuracy 

A Shapiro-Wilk test showed the error rate data (Figure 56) for some sessions did not 

satisfy the requirement or normality (p < .05).  Logarithmic and polynomial 

transformations failed to remedy this.  The Aligned Rank Transform (ART) procedure 

[135] does not have a requirement of normality and was used to analyze the data.13 

 
Figure 56. Total error rates for the two conditions evaluated over the ten sessions. 

                                                 

13 Because ART transforms the error rate values into ranks, the original empirical data is lost and statistical 

power is decreased.  In human-computer interaction research, it is common to proceed with ANOVA, even 

if the data diverge from a normal distribution [61 (p. 223)].  ANOVA on the original data shows only the 

main effect of layout to be significant on TER (F1,4 = 46.45, p < .001), UER (F1,4 = 7.00, p < .05), and CER 

(F1,4 = 34.80, p < .005). 
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TER was 1.7% for MIME and 5.2% for QWERTY in session ten.  As with entry 

speed, the group effect was not significant for TER (F1,4 = 2.58, p > .05), UER 

(F1,4 = 0.96, ns), and CER (F1,4 = 3.51, p > .05).  Layout had a significant effect on TER 

(F1,4 = 50.16, p < .001), UER (F1,4 = 7.38, p < .05), and CER(F1,4 = 46.24, p < .001).  

Entry using MIME was consistently more accurate than using QWERTY; the slower 

entry speed benefitted accuracy. 

Session also had a significant effect on TER (F1,4 = 2.33, p < .05).  Unfortunately, 

it seems that TER tends to increase with technique familiarity.  Figure 57 illustrates TER 

values in the first and last session for both conditions. 

 
Figure 57. A comparison of error rates between the first and last sessions for each condition. 

Error bars represent ±1 SD of TER. A box plot representation appears in Appendix F. 

The discrepancy between the two techniques is clearly evident.  Though TER for 

MIME is significantly lower than for QWERTY, another pattern emerges: for each 

technique, TER is higher at the end of the study than at the beginning.  Increased 

familiarity with a technique might lead to increased carelessness and decreased accuracy, 
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which may benefit entry speed.  However, the increase in TER from session one to 

session ten is not statistically significant (p > .05). 

MIME’s low error rate is lower than that of other techniques, but the use of 

various error rate metrics make meaningful comparisons impossible.  KALQ yielded a 

5.2% MSD error rate [83].  The error rate in the VirHKey study was 5.9% in the final 

session [73] and the error rate in the Opti study was 4.2% in the last session [69].  Both 

studies used a character wise error rate metric.  Unfortunately, the MSD metric does not 

capture errors that were committed and corrected during the trial, and a character wise 

metric does not accurately represent corrected or uncorrected errors. 

With a new technique (i.e., MIME), participants might see correcting errors as too 

costly with respect to performance, so they slow their entry speed.  With a familiar 

technique (i.e., QWERTY), participants might be willing to make and correct errors, 

believing that their overall performance would be heightened.  This speed-accuracy 

trade-off [108, 142] could represent participants’ predisposition or a confounding 

variable.  To eliminate the effect, a user study could be designed to ensure equal error 

rates in both conditions.  Participants could be required to perform flawless text entry – a 

trial would be repeated if an error were made.  This would ensure a TER of 0%, but 

would not reflect actual usage at all. 

7.5.3 Participant Feedback 

The NASA TLX scores are based on a discrete, non-continuous scale.  Additionally, the 

Shapiro-Wilk test showed the participants’ feedback does not represent a normal 
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distribution.  Thus, the non-parametric Wilcoxon signed rank test is appropriate for 

statistical analysis of a pair of conditions, administered within-subjects [61 (p. 214), 86 

(p. 475)].  The feedback scores are summarized in Figure 58. 

 
Figure 58. Participant feedback using NASA TLX workload scores. 

Error bars represent ±1 SD. A box plot representation appears in Appendix F. 

Not surprisingly, there is no statistically significant difference in workload scores 

between sessions one and ten using QWERTY (p > .05).  This is likely the result of 

participants’ familiarity with the layout.  However, there was a slight worsening in the 

physical workload.  The session ten score for QWERTY exceeded even that of MIME in 

session one.  Specifically, three participants noted discomfort in their right hands when 

using QWERTY, but not MIME.  These participants had XS and S glove sizes and 

owned mobile devices smaller than the Nexus 4.  The discomfort is likely attributable to 

frequent thumb movement across the screen, necessitating a shift in grip for those 

participants. 
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There was a significant difference using MIME between session one and ten, 

resulting in an improvement in mental (z = -2.201, p < .05), temporal (z = -1.992, 

p < .05), performance (z = -2.023, p < .05), effort (z = -2.201, p < .05), and frustration 

(z = -2.201, p < .05) workload.  There was no significant difference in physical workload 

(z = -0.548, ns).  By session ten, there was no significant difference in any of the 

workloads between MIME and QWERTY (p > .05).  This is promising, as it suggests that 

MIME’s workload is similar to that of the established norm. 

7.6 Conclusion 

One handed, one thumb text entry is valuable for mobile users.  MIME was designed for 

one thumb input, using the knowledge researched and presented in previous chapters.  

The character arrangement was determined using an exhaustive evaluation of a subset of 

the most frequent characters, representing a majority of the mobile corpus.  Other 

characters were then added in a locally optimal manner.  The MIME layout 

accommodates special character, numerals, and punctuations.  It also moves keys away 

from the left and right edges to prevent unintentional selections. 

MIME entry speed increased significantly during the study, with a projection that 

it would surpass QWERTY after 12 hours of practice.  Error rates were consistently low 

and significantly lower than QWERTY.  By the end of the study, participant feedback for 

MIME was positive, especially from three participants who found it painful to use the 

QWERTY keyboard. 
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Chapter 8  
Concluding Remarks 

This dissertation highlighted and summarized text entry research from over the past 21 

years.  Combined with new research that has been published and presented at several 

academic conferences, this dissertation presents the design and evaluation of a novel 

technique for mobile text entry. 

8.1 Summary of Contributions 

Examination of Techniques for Mobile Text Entry 

The digitizers and motion sensors in mobile devices allow for numerous forms of input.  

Character recognition was found to be error prone due to variation in users’ handwriting, 

and handwriting in general is slower than typing.  Mid-air gestures were deemed 

inappropriate for mobility, as it would be too difficult to distinguish the user’s movement 

of the device from the user’s movement in the environment.  Finally, a comparison of 

tapping and menu navigation (i.e., word gesture) text entry showed tapping techniques 

were faster.  The general design of MIME used an optimized layout whose characters 

were entered using taps, long taps, and simple gestures. 

Software to Evaluate Mobile Text Entry Techniques on Android Devices and 

Encourage Consistent Methodology 

TEMA facilitates evaluating text entry methods on Android devices.  It presents phrases 

for transcription and gathers metrics on the text inputted and low level events directly 
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from the input method.  The review of exiting text entry research revealed a variety of 

incongruent accuracy metrics, preventing meaningful comparison.  A goal of TEMA was 

to bring consistency to evaluation methodology.  In support of this, many researchers in 

academia and industry are now using TEMA.  A user study conducted to illustrate 

TEMA’s utility showed that a tapping text entry method can be faster than a menu 

navigation technique, thus reaffirming the design decision for MIME. 

Explanation of Users’ Feedback Preferences 

Soft keyboards often have audio and haptic feedback options to compensate for the lack 

of feedback when typing.  The results of a user study did not show feedback had a 

significant effect on text entry performance.  However, a user survey revealed the reason 

for some users’ preference for one form of feedback over others.  Many users shun audio 

feedback out of courtesy for those around them.  Others disable both audio and haptic 

feedback to save precious battery power. 

Mobile Corpus 

A corpus of mobile text entry was created to provide a phrase set to evaluate mobile text 

entry methods and to calculate digram frequencies for mobile text entry.  Mobile text 

entry is often very informal and involves emailing, texting, and posting to social 

networks.  A mobile corpus was created that mimicked the typical proportion of those 

tasks. 
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Investigation of Easily-Selectable Key Locations on a Mobile Touchscreen 

With smartphones increasing in size, some users find it difficult to reach some areas of 

the screen.  Even with hands large enough to reach all areas of the screen, the ergonomics 

of one’s thumb makes selection in some regions of the screen easier than others.  The 

conducted user study gathered gesture duration, gesture length, and target selection times 

for input using each thumb.  The target selection data represents which areas of the screen 

are easier or harder to select.  It also provides information on target selection tendencies 

(e.g., touches favouring the lower half of a target, or the edge towards the middle of the 

keyboard).  Interestingly, participants did not always perform the fastest with their 

dominant hand.  In addition, participants with hand lengths of approximately 170 mm 

performed significantly slower in selection tasks and likely required shifting their grip of 

the smartphone in order to reach some targets.  This difficulty validated the design 

decision to map the frequent space character to a gesture that could be entered anywhere 

on the screen. 

Development of a New Optimized Mobile Text Entry Technique 

The results from previous chapters were used to develop MIME: input is performed using 

taps, long presses, and simple gestures; characters were assigned to keys based on their 

frequency in the mobile corpus and the key selection times; and the resulting input 

method was evaluated in a user study using TEMA.  MIME’s error rate was consistently 

low and significantly lower than QWERTY’s.  MIME’s entry speed did not surpass 

QWERTY’s during the ten sessions, but is expected to do so after approximately 12 
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hours of practice.  Most importantly, MIME’s layout places frequent character in easy to 

reach locations and this alleviated the difficulty and physical discomfort experience by 

participants using QWERTY. 

8.2 Future Improvements to MIME 

Participants’ relatively slow entry speed with MIME benefitted their accuracy – the time 

used to scan for the next character allowed for more precise selection of the intended key.  

As a user’s proficiency with MIME increase, his or her thumb movements will quicken, 

increasing the likelihood of committing an error.  To alleviate this, a touch model or 

language model could be integrated to correct ambiguous selections.  A similar technique 

was recently investigated with tablets [124]. 

The data from Chapter 6’s user study could be used to determine a participant’s 

actual point of selection, relative to the intended selection (i.e., the highlighted target).  

Figure 51 illustrates many near misses occurred along the bottom border of a key located 

towards the middle of the layout, and along the inner boarders of a key along the edge of 

the layout.  To improve accuracy, a user’s actual touch event could be translated to an 

intended location in real-time. 

However, consistently translating the point of a touch event could result in an 

unintentional, adjacent key always being selected.  This would result in user frustration 

similar to that for autocorrect.  Augmenting the touch model with a language model 

would alleviate this issue.  Digrams would be formed from the previous character and the 

character of the selected key, and likely adjacent keys (as determined by the touch 
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model).  The frequencies of those digrams would be compared and the most likely key 

selected. 

Performance might also be improved by implementing word suggestion or 

completion.  However, care must be taken not to increase the user’s focus of attention 

[63].  Like the keyboard on the BlackBerry Z10, candidate words could appear above the 

next letter in the word – close to the user’s next target for selection.  With MIME, the 

user could accept the candidate word with a gesture (e.g., a checkmark). 

8.3 Future Improvements to TEMA 

TEMA has garnered a lot of attention from researchers around the world.  An often-

requested feature is the ability to use custom phrase sets with TEMA.  Two researchers 

have already offered phrase sets for Chinese and German text entry.  The upcoming 

acceptance of third-party keyboards on iOS devices also opens a new platform for 

development of TEMA-like software.  (Though, a name change to TEMi or TEMO 

would be appropriate to reflect the iOS platform.)  There are many avenues for further 

development of TEMA and also opportunities for collaborations in both academia and 

industry. 
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Appendix A  
Summary of Existing Research 

Table 9. A chronological summary of research involving onscreen and mobile techniques for English text entry. Unless otherwise noted, “error 
rate” refers to the uncorrected error rate. For comparison, the first entry evaluates a physical mini-QWERTY keyboard. 

Authors Input 
Type Description Technique (input device)  Speed (wpm)   Error Rate (%)  Practice Notes Initial Skilled Initial Skilled 

Clarkson et al. 
(2005) [20] 

Tap An evaluation of two physical 
QWERTY keyboards for mobile 
devices; error rate was averaged 
over both keyboards 

QWERTY (Dell) 
QWERTY (Targus) 

29.12 
34.33 

58.61 
61.44 6.12 8.32 20 sess. 

(400 min.) 
4 

Goldberg and 
Richardson 
(1993) [32] 

Chars Single-stroke gestures representing 
English letters 

Unistrokes (stylus) 6.2 13.0 NR NR 1 week 1 

Venolia and 
Neiberg (1994) 
[119] 

Menu Characters are selected from a pie 
menu 

T-Cube (stylus) 3.6 21.2 NR NR 9 sessions 1, 3 

MacKenzie and 
Zhang (1997) 
[68] 

Chars Single-stroke gestures representing 
English letters 

Graffiti (stylus) NR NR 14.5 3.1 5 min.  

Mankoff and 
Abowd ( 1998) 
[72] 

Menu Words are entered by selecting 
characters, in sequence, from a pie 
menu by drawing a single stroke 

Cirrin (stylus) NR 20 NR NR 2 months  
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Authors Input 
Type Description Technique (input device)  Speed (wpm)   Error Rate (%)  Practice Notes Initial Skilled Initial Skilled 

Perlin (1998) 
[89] 

Menu Characters are entered based on 
the trajectory of egress from and 
entry into a central resting zone; 
input can be one continuous 
gesture 

Quikwriting (stylus) NR NR NR NR NA  

MacKenzie and 
Zhang (1999) 
[69] 

Tap Characters are arranged in 
decreasing frequency extending 
out from the centre of the 
keyboard 

Opti 
QWERTY (soft keyboard) 

17 
28 

45 
40 

2.07 
3.21 

4.18 
4.84 

20 sess. 
(400 min.) 

6 

Isokoski and 
Raisamo (2000) 
[42] 

Chars Compass directions are used to 
create optimal prefix codes for 
gestures; participants were trained 
using the touchpad, then tested on 
other devices 

MDITIM (touchpad) 
MDITIM (joystick) 
MDITIM (keyboard) 
MDITIM (mouse) 
MDITIM (trackball) 

2.5 
NR 
NR 
NR 
NR 

15 
NR 
NR 
NR 
NR 

7.6 
5.5 
4.9 
6.5 
6.5 

6 
3 
3 
5 
7.2 

10 sess. 
(5 hrs) 

3 

Ward et al. 
(2000) [123] 

Menu Pointer movement steers a target 
through a moving, hierarchical, 
language-model-based menu of 
characters 

Dasher (mouse) 
QWERTY typing (keyboard) 
 

7 
50 

18 
55 

7 
8 

3 
6 

60 min. 
30 min. 

3 

Partridge et al. 
(2002) [87] 

Midair Text is entered by tilting a wrist-
watch-sized device and pushing 
buttons 

TiltType (prototype device) NR NR NR NR NA  

Sazawal et al. 
(2002) [101] 

Midair Tilting selects a zones of 
characters; a word is inferred using 
T9-like disambiguation 

Unigesture (prototype device) 2.0 NR NR NR NA 1 

Wigdor and 
Balakrishnan 
(2003) [126] 

Midair Multi-Tap input is disambiguated 
by tilting the cell phone to indicate 
the desired letter 

Multi-Tap (phone keypad) 
TiltText (phone keypad) 

7.53 
7.42 

11.04 
13.57 

4 
22 

3 
9 

16 blocks 3,6 
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Authors Input 
Type Description Technique (input device)  Speed (wpm)   Error Rate (%)  Practice Notes Initial Skilled Initial Skilled 

Wobbrock et al. 
(2003) [140] 

Chars EdgeWrite gestures are drawn 
along the raised boarder of the 
writing area 

EdgeWrite (stylus) 
Graffiti (stylus) 

NR 
NR 

6.6 
7.2 

NR 
NR 

0.34 
0.39 

12 
sentences 

5 

Isokoski and 
Raisamo (2004) 
[43] 

Menu Quikwriting characters are entered 
based on the trajectory of egress 
from and entry into a central 
resting zone; input can be one 
continuous gesture 

handwriting (pen) 
Quikwriting (thumbstick) 
Quikwriting (stylus) 
typing (QWERTY keyboard) 

26 
4 
4 
39 

NA 
13 
16 
NA 

NR 
0.2 
0.8 
NR 

NR 
0.4 
0.3 
NR 

20 sess. 
(5 hrs) 

3,5 

Kristensson and 
Zhai (2004) 
[50] 

Menu Word-gestures on an onscreen 
keyboard represent the sequential 
path between letters spelling the 
word 

SHARK2 (stylus) NR 70 NR NR NR  

Wobbrock et al. 
(2004) [137] 

Chars EdgeWrite gestures are drawn 
using a gamepad joystick (a.k.a. 
thumbstick) 

date stamp (thumbstick) 
EdgeWrite (thumbstick) 
onscreen typing (ABC keyboard) 

NR 
NR 
NR 

4.43 
6.40 
6.17 

NR 
NR 
NR 

5.24 
10.85 
3.32 

15 min. 4 

Wobbrock et al. 
(2004) [138] 

Chars EdgeWrite gestures are drawn 
using a joystick and touchpad; 
WiViK is an onscreen keyboard; 
participants were motor-impaired 

EdgeWrite (joystick) 
EdgeWrite (touchpad) 
WiViK (joystick) 

NR 
NR 
NR 

0.77 
1.00 
0.84 

NR 
NR 
NR 

29.56 
25.40 
5.11 

35 min. 4 

Martin (2005) 
[73] 

Menu Characters are arranged in a 
pentagrid; flicking gestures are 
used to navigate the pentagrid and 
select characters 

VirHKey (stylus) 6.60 22.89 2.80 5.87 20 sess. 
(7 hrs) 

6 

Rinott (2005) 
[96] 

Menu SonicTexting associates 
thumbstick movements to 
characters; feedback is given 
aurally, not visually; thumbstick 
device called “Keybong” 

SonicTexting (thumbstick) NR NR NR NR NA  
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Authors Input 
Type Description Technique (input device)  Speed (wpm)   Error Rate (%)  Practice Notes Initial Skilled Initial Skilled 

Williamson and 
Murray-Smith 
(2005) [127] 

Menu Hex distributes characters into one 
of six groups; a character is 
entered by selecting the group and 
then the character within the 
group; the user study involved 
only one participant 

Hex NR 12 NR NR 30 hours  

Wobbrock and 
Myers (2005) 
[136] 

Chars EdgeWrite is used with multiple 
devices; participants are “able-
bodied experts” 

EdgeWrite (button sliding) 
EdgeWrite (iso. joystick) 
EdgeWrite (joystick) 
EdgeWrite (key typing) 
EdgeWrite (stylus) 
EdgeWrite (thumbstick) 
EdgeWrite (touchpad) 
EdgeWrite (trackball) 

NR 
NR 
NR 
NR 
NR 
NR 
NR 
NR 

10.1 
12.3 
12.9 
16.6 
24.0 
14.7 
19.1 
12.7 

NR 
NR 
NR 
NR 
NR 
NR 
NR 
NR 

10.8 
5.0 
8.4 
2.7 
2.8 
8.8 
4.7 
6.6 

NR  

Chau et al. 
(2006) [18] 

Chars EdgeWrite is used with a thumb-
operated isometric joystick on the 
front of a mobile phone and with a 
finger-operated isometric joystick 
on the back of a mobile phone 

EdgeWrite (iso. joy.; back) 
EdgeWrite (iso. joy.; front) 

7.2 
12.0 

NR 
NR 

2.2 
2.3 

NR 
NR 

NR  

Felzer and 
Nordmann 
(2006) [26] 

Menu LURD-Writer arranges character 
in menus that are accessed using 
the directional inputs left, up, 
right, and down; the user study 
employed one motor-impaired 
participant and the Hands-free 
Mouse Control System (HaMCoS) 

LURD (mouse) 
LURD (HaMCoS) 

1.6 
1.0 

NR 
NR 

NR 
NR 

NR 
NR 

NA 1 
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Authors Input 
Type Description Technique (input device)  Speed (wpm)   Error Rate (%)  Practice Notes Initial Skilled Initial Skilled 

Wobbrock and 
Myers (2006) 
[132] 

Chars EdgeWrite is used with a trackball; 
participants consisted of four able-
bodied and one motor-impaired 
users 

EdgeWrite (trackball; able) 
EdgeWrite (trackball; impaired) 

NR 
NR 

9.87 
5.28 

NR 
NR 

3.75 
11.80 

45 min. 
8 sessions 

4 

Wobbrock et al. 
(2006) [139] 

Menu EdgeWrite is augmented with 
Fisch, an in-stroke word 
completion technique 

EdgeWrite (iso. joy.) 
EdgeWrite (iso. joy.; Fisch) 

9.39 
12.81 

NR 
NR 

1.01 
0.54 

NR 
NR 

NR  

Költringer et al. 
(2007) [47] 

Menu TwoStick uses a dual-joystick 
gamepad controller; one joystick 
selects one of nine zones, while 
the other joystick selects a 
character from that zone 

onscreen typing (QWERTY) 
TwoStick (thumbstick x2) 

6.32 
5.10 

8.58 
13.34 

12.90 
14.87 

5.35 
8.21 

20 sess. 
(5 hrs) 

4 

Kristensson 
(2007) [51] 

Menu Word-based gestures on an 
onscreen keyboard represent the 
sequential path between letters 
spelling the word; SHARK using a 
QWERTY layout 

ShapeWriter 
QWERTY (two-thumb, 
physical) 

20.9 
27.7 
 

NR 
NR 
 

1.1 
1.1 

NR 
NR 
 

NA  

Witt and 
Janssen (2007) 
[128] 

Midair A data glove is used to capture 
hand gestures, which are mapped 
to input; Method 1 uses modifier 
keys, Method 2 uses only gestures 

Method 1 (data glove) 
Method 2 (data glove) 

1.5 
1.5 

2.5 
2.0 

42 
47 

29 
34 

5 sessions 3 
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Authors Input 
Type Description Technique (input device)  Speed (wpm)   Error Rate (%)  Practice Notes Initial Skilled Initial Skilled 

Wobbrock et al. 
(2007) [134] 

Menu EdgeWrite is augmented with 
Fisch, an in-stroke word 
completion technique; in the 
“input blind” conditions, users 
held the device under a table but 
could view entered text on desktop 
display 

EdgeWrite (iso. joy.; front) 
Multi-Tap (phone keypad) 
 
EdgeWrite (iso joy; front; Fisch) 
T9 (phone keypad) 
 
EdgeWrite (iso. joy.; back) 
EdgeWrite (iso joy; back; Fisch) 
 
Input Blind: 
EdgeWrite (iso. joy.; front) 
Multi-Tap (phone keypad) 

7.74 
8.83 
 
13.65 
14.63 
 
6.34 
11.11 
 
 
8.09 
3.09 

NR 
NR 
 
NR 
NR 
 
NR 
NR 
 
 
NR 
NR 

1.34 
0.52 
 
0.35 
0.28 
 
4.38 
0.20 
 
 
2.96 
1.58 

NR 
NR 
 
NR 
NR 
 
NR 
NR 
 
 
NR 
NR 

NA  

Castellucci and 
MacKenzie 
(2008) [12] 

Chars A stylus is used to draw simple, 
single-stroke gestures representing 
English letters 

Unistrokes (stylus) 
Graffiti (stylus) 

4.1 
4.0 

15.8 
11.4 

43.4 
26.2 

16.3 
26.2 

20 sess. 
(5 hrs) 

2 

Castellucci and 
MacKenzie 
(2008) [13] 

Midair Text is entered by combining 
vertical, horizontal, and rolling 
motions with the Wiimote 

Unigest (Wiimote) NR NR NR NR NA  

Martin and 
Isokoski (2008) 
[74] 

Char, 
Menu 

EdgeWrite gestures are entered 
with the help of onscreen 
characters; characters are 
displayed in the corner associated 
with the next motion; hints are 
static, dynamic (i.e., animated), or 
shown on paper 

EdgeWrite (joystick; dynamic) 
EdgeWrite (joystick; paper) 
EdgeWrite (joystick; static) 

2.5 
2.1 
1.5 

6.7 
5.7 
5.0 

1.3 
1.0 
1.1 

0.4 
0.5 
0.8 

1 hour 3,5 
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Authors Input 
Type Description Technique (input device)  Speed (wpm)   Error Rate (%)  Practice Notes Initial Skilled Initial Skilled 

Shoemaker 
et al. (2009) 
[102] 

Midair Remote pointing is used to input 
text using onscreen 
keyboards/menus (distance in 
feet); the “Cube” condition is a 3D 
extension of the T-Cube technique 
for gestural text entry 

Circle (Wiimote, 8’) 
Cube (Wiimote, 8’) 
QWERTY (Wiimote, 8’) 
 
Circle (Wiimote, 9’) 
Circle (Wiimote, 18’) 
QWERTY (Wiimote, 9’) 
QWERTY (Wiimote, 18’) 

10.2 
7.6 
18.9 
 
11.6 
10.0 
14.5 
10.3 

NR 
NR 
NR 
 
NR 
NR 
NR 
NR 

6.3 
7.0 
2.4 
 
8.9 
14.1 
8.5 
19.0 

NR 
NR 
NR 
 
NR 
NR 
NR 
NR 

NA  

Arif et al. 
(2010) [1] 

Tap An evaluation of the iPhone’s 
QWERTY soft keyboard 

QWERTY (two thumbs) 
QWERTY (two thumbs, haptic 
feedback) 

15.92 
16.27 

NR 
NR 

10.38 
9.46 

NR 
NR 

NA 4 

Isokoski et al. 
(2010) [41] 

Tap, 
Char 

Tapping on a soft keyboard is 
augmented with Unistroke 
shortcuts 

UniKeyb 7 51 NR 4 36 sess. 
(3 hrs) 

3,5 

MacKenzie 
et al. (2011) 
[66] 

Menu Huffman codes are generated 
using a language model and 
mapped to four gamepad keys 

H4 (gamepad) 7.7 20.4 0.34 0.89 10 sess. 
(400 min.) 

3,5 

Castellucci and 
MacKenzie 
(2013) [15] 

Tap, 
Char, 
Menu 

An evaluation of four mobile text 
entry techniques using a novel 
application to gather metrics 

QWERTY (Android, finger) 
QWERTY (Android, thumbs) 
DioPen (Graffiti-like) 
Swype (ShapeWriter-like) 

20.9 
20.8 
7.0 
16.7 

NR 
NR 
NR 
NR 

7.1 
13.8 
30.4 
7.0 

NR 
NR 
NR 
NR 

NA 4 

Castellucci and 
MacKenzie 
(2013) [16] 

Menu, 
Midair 

H4 encodings are mapped to 
touchpad and midair regions 

H4 (touchpad) 
H4 (Wiimote) 

6.6 
5.3 

NR 
NR 

9.2 
10.8 

NR 
NR 

NA 4 



 

 133 

Authors Input 
Type Description Technique (input device)  Speed (wpm)   Error Rate (%)  Practice Notes Initial Skilled Initial Skilled 

Castellucci and 
MacKenzie 
(2013) [17] 

Tap The effect of audio and haptic 
feedback are investigated using a 
QWERTY soft keyboard 

QWERTY (Android, two 
thumbs) 
QWERTY (audio feedback) 
QWERTY (haptic feedback) 
QWERTY (audio and haptic) 

29.9 
29.9 
28.7 
30.3 

NR 
NR 
NR 
NR 

9.7 
10.3 
10.2 
10.7 

NR 
NR 
NR 
NR 

NA 4 

Cuaresma and 
MacKenzie 
(2013) [21] 

Tap, 
Menu 

An evaluation of four 
QWERTY-like soft keyboards; 
Octopus adds shortcut gestures for 
frequent words; Curve is 
ShapeWriter-like; T+ groups two 
letters to a key 

QWERTY (iOS, two thumbs) 
Octopus (two thumbs) 
TouchPal Curve (one thumb) 
TouchPal T+ (two thumbs) 

54.0 
54.7 
35.3 
38.7 

NR 
NR 
NR 
NR 

4.6 
1.9 
5.4 
4.1 

NR 
NR 
NR 
NR 

NA 6 

Fitton et al. 
(2013) [28] 

Menu, 
Midair 

Tilting a tablet moves a ball 
cursor; letters are entered by 
dwelling over them 

Sitting, one-handed 
Sitting, two-handed 
Walking, one-handed 
Walking, two-handed 

9.0 
10.0 
7.5 
8.0 

NR 
NR 
NR 
NR 

4.5 
3.0 
7.0 
5.0 

NR 
NR 
NR 
NR 

NA 1,3,5 

Oulasvirta et al. 
(2013) [83] 

Tap Characters are arranged on two 
halves of a tablet keyboard; one 
half at the bottom-left corner, the 
other at the bottom-right corner 

QWERTY 
KALQ 

27.7 
NR 

NR 
37.1 

9.0 
NR 

NR 
5.2 

13-19 hrs 5 

Arif et al. 
(2014) [2] 

Tap, 
Char 

Tapping on a soft keyboard is 
augmented with gestures for space, 
backspace, shift, and enter 

QWERTY lowercase 
QWERTY mixed case 
New lowercase 
New mixed case 

20.78 
14.51 
20.10 
17.35 

NR 
NR 
NR 
NR 

12.0 
8.21 
12.0 
8.98 

NR 
NR 
NR 
NR 

NA 4 

Fuccella et al. 
(2014) [30] 

Tap, 
Menu 

Long-holding a key enters its letter 
and brings up four additional 
letters around it; gesturing to those 
letters enters them in succession 

QWERTY 
KeyScretch 

NR 
NR 

31.8 
37.4 

NR 
NR 

3.47 
3.80 

25 sess. 
(6 hrs) 

4 
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Authors Input 
Type Description Technique (input device)  Speed (wpm)   Error Rate (%)  Practice Notes Initial Skilled Initial Skilled 

Notes: 
1.  Converted to wpm assuming 5-character words (including spaces) [143]. 
2.  Error rate based on reported correction rate. 
3.  Values approximated from graphs. 
4.  Total Error Rate metric used. 
5.  MSD error rate metric used. 
6.  Character-wise error rate metric used. 
NA: Value not applicable. 
NR: Value not reported.  
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Appendix B  
List of TEMA Users 

Industry 

Naveen Durga, KeyPoint Technologies Ltd. 

Aidan Kehoe, Logitech, Inc. 

Motamedi Nima, Motorola, Inc. 

Curtis Ray, Tactus Technology Inc. 

Philip Strain, Google Inc. 

Donnelle R. Weller, Sprint Nextel Corporation 

Academia 

Nikola Banovic, Carnegie Mellon University, USA 

Mike Clarke, University of Washington, USA 

James Clawson, Georgia Institute of Technology, USA 

Mark Dunlop, University of Strathclyde, UK 

Vittorio Fuccella, University of Salerno, Italy 

Michael Geary, Colorado Technical University, USA 

Mayank Goel, University of Washington, USA 

Jibo He, Wichita State University, USA 

Niels Henze, University of Stuttgart, Germany 

Kheng Hui, University of Osnabrück, Germany 

Poika Isokoski, University of Tampere, Finland 

Anirudha Joshi, Indian Institute of Technology Bombay, India 

Erno Mäkinen, University of Tampere, Finland 

Benoît Martin, University of Lorraine, France 

Alexander Ng, University of Glasgow, UK 

Janet C. Read, University of Central Lancashire, UK 
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Amanda Smith, Wichita State University, USA 

Robert Teather, McMaster University, Canada 

Anju Thapa, University of Tampere, Finland 

Sandy Tran, University of Toronto, Canada 

Simon Whatley, University College London, UK 

Hui-Shyong Yeo, Korea Advanced Institute of Science and Technology, South Korea 
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Appendix C  
Samples from the Mobile Phrase Set 

C.1 Email Phrase Set 

Phrase length (in characters)  Min: 20 Max: 35 Ave: 30.0 
Number of tokens:   2951 (1098 unique) 
Average tokens per phrase:  5.9 
Average token length (in characters): 4.3 

C.1.1 Frequencies (Top 10) 

·· 4.57% 
e· 2.48% 
·t 1.88% 
th 1.43% 
s· 1.37% 
·a 1.37% 
t· 1.27% 
in 1.20% 
he 1.15% 
d· 1.07% 

 

· 17.70% 
e 8.65% 
t 6.43% 
o 5.75% 
a 5.73% 
i 5.24% 
n 5.19% 
r 4.39% 
s 4.35% 
l 2.97% 

C.1.2 Samples 

Hope things are going well. 
I'm not sure it's your style. 

Would you mind to handle this one? 
You cannot change the past. 
Sorry, but we're swamped. 
Here's a simple first draft. 

Aah, thanks for the clarification. 
Do you need anything else? 

The cost of the seminar is $397. 
Can we change the arrival to 10/21? 
Andy: Just checking on the options. 

Comments due by November 22, 2000. 
That will make 562,003 to 1. 
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Mark: Here's the other email. 
Can we meet from 10am-11am instead? 

The P&L showed this deal at $40. 
The term is 4/1/00 through 3/31/01. 
Am I taking care of you or what?? 
You're right; I can't open the doc. 

Folks: Here are my edits. 
I don't have any comments to add. 

I really need to get a life. 
Let's try to get this thing signed. 

Let's shoot for lunch next Tuesday. 
It is presently trading around $30. 

They are filing lawsuits. 
How should I handle this? 

What did you have in mind, John? 
I appreciate your efforts. 

Thanks for your assistance. 
 
 

C.2 SMS Phrase Set 

Phrase length (in characters)  Min: 25 Max: 35 Ave: 29.6 
Number of tokens:   3152 (1366 unique) 
Average tokens per phrase:  6.3 
Average token length (in characters): 3.9 

C.2.1 Frequencies 

e· 2.36% 
t· 1.84% 
·t 1.73% 
.· 1.63% 
in 1.24% 
·a 1.20% 
·s 1.11% 
ha 1.10% 
s· 1.09% 
o· 1.07% 

· 17.96% 
e 7.65% 
a 6.73% 
o 6.33% 
t 5.89% 
i 4.96% 
n 4.94% 
h 4.57% 
s 4.02% 
r 3.68% 
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C.2.2 Samples 

i have no money 4 steve mate! ! 
yeah excited! whachudoin? 

thanks for loving me so. you rock 
i thought it was a box of cutlery 

good nite. i thought u'l talk 2 me. 
hahaha where are you now? 

hey, thanx for helping me today. 
hey tmr can save an extra seat? 

haha how much will it cost? 
i don't know the next line 

how cheap is your cheapness? 
wts. sick. tis year trackers own 

go home safe!!(: thanks for today! 
ok. but i shld b doing hmwk le. 

yes ok. will do in a bit. 
cn i gv u a cl at ur lnd ph? 

vry gud mornin.. hav a g8 day :-) 
call me when u get a chance 

u done let me noe, my sis is back. 
what happened to calling me back? 

cool no problem.. cya :-) 
nope but i'll be going next week!(: 
can i giv this it @ 2mrw eveng . 

thanks for the quick reply. :-) 
yes! i'm already losing my hair :( 

ah._. i just got your sms ._. 
stupid auto correct on my phone 

ok lor. msg me b4 u call. 
lol u believe meh hahaha. 
yup wat time r they going? 

 
 

C.3 Twitter Phrase Set 

Phrase length (in characters)  Min: 17 Max: 35 Ave: 28.0 
Number of tokens:   2641 (1344 unique) 
Average tokens per phrase:  5.3 
Average token length (in characters): 4.5 
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C.3.1 Frequencies 

e· 1.71% 
t· 1.13% 
s· 1.06% 
·t 1.05% 
in 1.01% 
er 0.87% 
·@ 0.82% 
th 0.81% 
an 0.80% 
·a 0.78% 
 

· 12.57% 
e 7.34% 
t 6.62% 
a 5.93% 
o 5.87% 
i 4.92% 
s 4.38% 
n 4.31% 
r 4.09% 
l 3.31% 

C.3.2 Samples 

and every day i love you more 
@ziemniak_ follow back ;* 

@chagreyson ahw :'( xd 
howhowhow. things stressing me out! 

fake it till you make it. 
@sydney4 luv you more sunshine 

@hannah love you:* 
i may act dumb, but i'm not dumb 
you pick me up when i fall down 

@bangbang dont be lazy 
@kolby thanks, means a lot 

dont worry, bae you got me <3 
touch my snacks #waystogetslapped 
#bestmanholiday awesome movie! 
my mommys' coming home! ! ^_^ 

@brooksbeau you do beau and ily <3 
i plan to relax all weekend. #yay 

i trusted you, my mistake (; 
@emma tell matt he's pretty 

i'm still up. #breakingbad 
163 emma watson #forbes30 

#lrt amen! say it one more time! 
i'm gonna find another youu 

i want chocolate milk brb 
ahahah i cant breathing!!!! #music 
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tamar & vince @ 9 and scandal @10 
#np my morning jacket - rocket man 

maybe its a good day for me. 
i don't know how to feel right now 

feeling proud i have a 3.8 gpa 
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Appendix D  
Key Selection Times 

The tables on the subsequent pages contain the key selection times from the user study 

described in Chapter 6.  The times (reported in milliseconds) represents the duration 

between selecting the first target (designated T1) and the second one (T2), averaged for 

both left and right hand input.  The following figure illustrates the location of each key 

and its identifying number. 

 
Figure 59. The layout and ID for each key in the MIME layout. 
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Table 10. The mean (and SD) of selection times from key T1 to T2, measured in milliseconds. This table covers T1 = 1..15, T2 = 1..16. 

Mean 
(SD) T1: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

T2:1 275 
(147) 

368 
(297) 

394 
(186) 

462 
(210) 

458 
(155) 

611 
(331) 

365 
(247) 

349 
(162) 

432 
(420) 

449 
(232) 

482 
(202) 

522 
(249) 

365 
(154) 

422 
(263) 

459 
(437) 

2 305 
(134) 

245 
(171) 

287 
(100) 

349 
(145) 

425 
(267) 

467 
(221) 

322 
(158) 

293 
(121) 

309 
(113) 

376 
(172) 

390 
(164) 

499 
(265) 

400 
(230) 

338 
(152) 

371 
(268) 

3 321 
(117) 

320 
(182) 

234 
(186) 

279 
(114) 

453 
(392) 

436 
(249) 

399 
(247) 

299 
(141) 

287 
(135) 

305 
(222) 

407 
(233) 

455 
(230) 

411 
(194) 

351 
(179) 

312 
(108) 

4 443 
(235) 

421 
(403) 

309 
(184) 

209 
(63) 

282 
(94) 

410 
(221) 

430 
(219) 

396 
(232) 

291 
(115) 

287 
(166) 

284 
(94) 

404 
(252) 

459 
(202) 

358 
(138) 

363 
(169) 

5 498 
(246) 

467 
(417) 

377 
(296) 

384 
(386) 

219 
(89) 

300 
(118) 

515 
(314) 

402 
(187) 

382 
(243) 

327 
(209) 

281 
(97) 

312 
(127) 

445 
(181) 

425 
(206) 

426 
(319) 

6 565 
(284) 

518 
(338) 

420 
(247) 

429 
(331) 

317 
(167) 

232 
(103) 

604 
(320) 

481 
(247) 

455 
(294) 

441 
(309) 

357 
(224) 

368 
(289) 

522 
(249) 

503 
(282) 

532 
(321) 

7 323 
(171) 

361 
(206) 

505 
(392) 

497 
(281) 

534 
(255) 

637 
(592) 

239 
(86) 

316 
(119) 

431 
(369) 

511 
(437) 

552 
(433) 

527 
(217) 

319 
(171) 

347 
(236) 

385 
(177) 

8 378 
(265) 

300 
(135) 

320 
(150) 

369 
(170) 

505 
(240) 

584 
(374) 

298 
(132) 

208 
(54) 

267 
(81) 

316 
(97) 

456 
(280) 

484 
(337) 

323 
(147) 

273 
(96) 

313 
(149) 

9 417 
(276) 

375 
(290) 

348 
(291) 

324 
(179) 

413 
(304) 

437 
(191) 

357 
(177) 

318 
(216) 

210 
(79) 

298 
(195) 

341 
(151) 

435 
(213) 

360 
(150) 

308 
(183) 

257 
(80) 

10 432 
(231) 

429 
(259) 

342 
(221) 

314 
(171) 

326 
(148) 

426 
(231) 

401 
(249) 

413 
(310) 

308 
(182) 

236 
(140) 

306 
(137) 

420 
(229) 

483 
(362) 

344 
(148) 

313 
(354) 

11 510 
(221) 

516 
(391) 

469 
(335) 

336 
(185) 

345 
(192) 

322 
(174) 

461 
(217) 

390 
(170) 

320 
(133) 

314 
(200) 

205 
(48) 

321 
(172) 

478 
(231) 

397 
(186) 

358 
(207) 

12 564 
(333) 

453 
(183) 

490 
(339) 

397 
(199) 

334 
(179) 

339 
(186) 

472 
(237) 

487 
(252) 

409 
(157) 

376 
(179) 

316 
(156) 

219 
(67) 

511 
(208) 

440 
(189) 

430 
(225) 

13 446 
(408) 

388 
(185) 

411 
(143) 

459 
(218) 

562 
(350) 

528 
(206) 

322 
(189) 

371 
(218) 

430 
(331) 

478 
(321) 

458 
(177) 

539 
(298) 

255 
(159) 

325 
(181) 

378 
(216) 

14 418 
(223) 

330 
(117) 

377 
(165) 

391 
(157) 

501 
(234) 

497 
(235) 

304 
(116) 

347 
(297) 

301 
(148) 

392 
(282) 

475 
(291) 

510 
(311) 

342 
(273) 

212 
(71) 

298 
(146) 

15 429 
(227) 

388 
(248) 

455 
(297) 

391 
(247) 

492 
(395) 

481 
(213) 

432 
(232) 

326 
(200) 

288 
(151) 

313 
(153) 

401 
(250) 

439 
(195) 

390 
(218) 

291 
(146) 

221 
(82) 

16 432 
(188) 

441 
(269) 

391 
(255) 

349 
(167) 

358 
(167) 

447 
(212) 

553 
(376) 

432 
(300) 

351 
(351) 

298 
(154) 

341 
(208) 

397 
(227) 

447 
(268) 

364 
(199) 

293 
(123) 
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Table 11. The mean (and SD) of selection times from key T1 to T2, measured in milliseconds. This table covers T1 = 16..30, T2 = 1..16. 

Mean 
(SD) T1: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

T2:1 424 
(147) 

548 
(340) 

571 
(310) 

499 
(399) 

437 
(273) 

504 
(276) 

483 
(288) 

567 
(561) 

585 
(299) 

559 
(389) 

632 
(470) 

520 
(231) 

524 
(258) 

514 
(169) 

600 
(282) 

2 406 
(193) 

425 
(172) 

495 
(215) 

472 
(390) 

388 
(208) 

387 
(172) 

414 
(223) 

499 
(266) 

519 
(192) 

525 
(327) 

434 
(189) 

437 
(151) 

478 
(225) 

531 
(233) 

503 
(170) 

3 358 
(182) 

421 
(227) 

437 
(170) 

486 
(367) 

384 
(163) 

387 
(190) 

406 
(223) 

395 
(191) 

490 
(239) 

501 
(277) 

487 
(381) 

417 
(193) 

478 
(298) 

443 
(162) 

535 
(280) 

4 326 
(146) 

376 
(241) 

431 
(216) 

475 
(344) 

416 
(240) 

393 
(210) 

396 
(218) 

360 
(138) 

422 
(167) 

506 
(294) 

461 
(222) 

409 
(152) 

430 
(222) 

427 
(147) 

584 
(297) 

5 374 
(255) 

349 
(192) 

344 
(136) 

485 
(181) 

452 
(233) 

445 
(244) 

358 
(107) 

399 
(210) 

385 
(143) 

533 
(283) 

516 
(289) 

437 
(134) 

469 
(293) 

442 
(176) 

550 
(329) 

6 434 
(251) 

377 
(187) 

370 
(188) 

538 
(206) 

538 
(295) 

453 
(210) 

455 
(206) 

600 
(834) 

430 
(218) 

527 
(183) 

549 
(255) 

479 
(182) 

567 
(331) 

525 
(284) 

523 
(267) 

7 407 
(156) 

455 
(134) 

479 
(132) 

336 
(144) 

388 
(233) 

401 
(214) 

501 
(351) 

490 
(217) 

566 
(216) 

439 
(214) 

447 
(267) 

419 
(143) 

503 
(240) 

499 
(185) 

578 
(373) 

8 388 
(232) 

392 
(135) 

494 
(241) 

371 
(174) 

349 
(219) 

374 
(229) 

380 
(157) 

409 
(155) 

528 
(263) 

406 
(181) 

405 
(234) 

426 
(297) 

490 
(446) 

466 
(230) 

532 
(253) 

9 294 
(127) 

353 
(184) 

452 
(317) 

372 
(148) 

389 
(322) 

307 
(106) 

349 
(190) 

391 
(193) 

467 
(203) 

429 
(225) 

406 
(221) 

406 
(267) 

416 
(247) 

412 
(183) 

460 
(183) 

10 287 
(154) 

313 
(142) 

349 
(131) 

439 
(204) 

385 
(210) 

315 
(112) 

357 
(308) 

323 
(123) 

373 
(163) 

473 
(245) 

398 
(169) 

433 
(275) 

352 
(136) 

389 
(182) 

440 
(161) 

11 305 
(194) 

336 
(227) 

325 
(157) 

466 
(227) 

421 
(207) 

388 
(158) 

326 
(113) 

332 
(148) 

373 
(205) 

510 
(279) 

422 
(172) 

396 
(130) 

417 
(224) 

394 
(201) 

554 
(520) 

12 340 
(124) 

312 
(134) 

284 
(118) 

516 
(233) 

492 
(303) 

423 
(191) 

426 
(268) 

390 
(239) 

388 
(256) 

552 
(234) 

514 
(239) 

442 
(153) 

483 
(253) 

446 
(193) 

485 
(267) 

13 425 
(219) 

453 
(203) 

551 
(341) 

284 
(98) 

310 
(112) 

391 
(204) 

504 
(660) 

474 
(184) 

528 
(182) 

395 
(273) 

390 
(186) 

384 
(113) 

460 
(319) 

457 
(153) 

581 
(320) 

14 343 
(154) 

413 
(190) 

475 
(219) 

323 
(175) 

269 
(116) 

290 
(98) 

348 
(126) 

430 
(227) 

479 
(203) 

408 
(254) 

339 
(232) 

322 
(124) 

446 
(304) 

451 
(162) 

535 
(226) 

15 279 
(109) 

422 
(281) 

443 
(241) 

390 
(194) 

323 
(220) 

256 
(73) 

283 
(86) 

359 
(155) 

486 
(263) 

465 
(310) 

378 
(216) 

329 
(159) 

350 
(144) 

412 
(278) 

548 
(390) 

16 197 
(53) 

303 
(168) 

367 
(187) 

451 
(238) 

417 
(246) 

314 
(170) 

266 
(111) 

305 
(126) 

423 
(235) 

499 
(313) 

417 
(221) 

314 
(120) 

295 
(99) 

355 
(189) 

447 
(229) 
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Table 12. The mean (and SD) of selection times from key T1 to T2, measured in milliseconds. This table covers T1 = 1..15, T2 = 17..30. 

Mean 
(SD) T1: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
T2: 17 528 

(215) 
451 

(222) 
387 

(139) 
372 

(189) 
384 

(223) 
411 

(206) 
467 

(203) 
418 

(214) 
407 

(270) 
359 

(263) 
314 

(153) 
331 

(171) 
454 

(197) 
398 

(177) 
370 

(208) 
18 546 

(271) 
465 

(174) 
512 

(280) 
411 

(161) 
432 

(271) 
375 

(167) 
505 

(206) 
449 

(182) 
464 

(216) 
406 

(225) 
325 

(139) 
322 

(158) 
508 

(231) 
472 

(243) 
403 

(167) 
19 499 

(389) 
432 

(208) 
542 

(300) 
484 

(232) 
593 

(358) 
625 

(327) 
400 

(235) 
421 

(296) 
439 

(232) 
453 

(197) 
496 

(263) 
564 

(218) 
354 

(312) 
369 

(266) 
441 

(333) 
20 426 

(203) 
396 

(165) 
427 

(189) 
456 

(209) 
464 

(201) 
513 

(164) 
374 

(163) 
331 

(138) 
355 

(168) 
456 

(314) 
498 

(305) 
491 

(193) 
327 

(149) 
324 

(173) 
322 

(150) 
21 473 

(240) 
435 

(191) 
455 

(236) 
400 

(183) 
477 

(340) 
535 

(299) 
408 

(193) 
404 

(256) 
350 

(239) 
330 

(127) 
403 

(217) 
419 

(142) 
409 

(222) 
346 

(266) 
275 

(112) 
22 507 

(194) 
496 

(282) 
410 

(238) 
470 

(277) 
411 

(206) 
516 

(266) 
503 

(280) 
430 

(227) 
415 

(252) 
317 

(149) 
354 

(170) 
456 

(222) 
454 

(248) 
380 

(204) 
358 

(328) 
23 513 

(187) 
480 

(211) 
444 

(186) 
441 

(271) 
438 

(228) 
466 

(293) 
525 

(275) 
468 

(264) 
399 

(194) 
405 

(288) 
318 

(120) 
386 

(194) 
462 

(185) 
487 

(448) 
343 

(133) 
24 535 

(186) 
525 

(187) 
488 

(243) 
453 

(156) 
435 

(184) 
486 

(337) 
577 

(261) 
496 

(164) 
485 

(258) 
454 

(225) 
492 

(395) 
389 

(182) 
533 

(204) 
512 

(321) 
419 

(208) 
25 678 

(560) 
646 

(644) 
789 

(1313) 
633 

(319) 
668 

(340) 
771 

(792) 
554 

(701) 
488 

(367) 
531 

(272) 
546 

(227) 
608 

(336) 
681 

(535) 
521 

(638) 
592 

(992) 
559 

(590) 
26 538 

(379) 
512 

(473) 
514 

(292) 
496 

(212) 
561 

(311) 
576 

(259) 
504 

(436) 
441 

(252) 
469 

(303) 
467 

(228) 
463 

(165) 
548 

(193) 
391 

(191) 
373 

(155) 
372 

(149) 
27 534 

(302) 
462 

(170) 
492 

(208) 
482 

(181) 
493 

(207) 
562 

(300) 
467 

(212) 
456 

(271) 
390 

(153) 
409 

(222) 
479 

(209) 
494 

(209) 
402 

(158) 
406 

(225) 
388 

(199) 
28 522 

(228) 
474 

(192) 
446 

(136) 
476 

(212) 
466 

(206) 
519 

(237) 
502 

(213) 
483 

(292) 
423 

(225) 
470 

(366) 
396 

(163) 
495 

(284) 
503 

(336) 
393 

(166) 
388 

(246) 
29 563 

(228) 
547 

(260) 
496 

(213) 
474 

(203) 
484 

(240) 
523 

(283) 
597 

(365) 
548 

(327) 
443 

(175) 
446 

(207) 
445 

(298) 
498 

(273) 
560 

(243) 
456 

(191) 
446 

(285) 
30 671 

(312) 
590 

(265) 
648 

(489) 
518 

(200) 
540 

(221) 
555 

(375) 
630 

(330) 
554 

(260) 
526 

(336) 
644 

(629) 
573 

(365) 
555 

(388) 
601 

(309) 
504 

(189) 
465 

(183) 
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Table 13. The mean (and SD) of selection times from key T1 to T2, measured in milliseconds. This table covers T1 = 16..30, T2 = 17..30. 

Mean 
(SD) T1: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
T2: 17 315 

(249) 
233 
(89) 

346 
(184) 

447 
(210) 

425 
(275) 

311 
(97) 

289 
(108) 

284 
(204) 

359 
(235) 

532 
(407) 

424 
(170) 

411 
(257) 

359 
(202) 

360 
(212) 

429 
(255) 

18 395 
(208) 

291 
(89) 

266 
(192) 

507 
(181) 

432 
(180) 

402 
(142) 

405 
(216) 

319 
(165) 

275 
(84) 

539 
(229) 

450 
(148) 

476 
(269) 

382 
(165) 

354 
(135) 

387 
(257) 

19 466 
(213) 

535 
(313) 

617 
(805) 

257 
(128) 

304 
(98) 

386 
(164) 

504 
(471) 

569 
(654) 

529 
(186) 

305 
(166) 

341 
(159) 

452 
(475) 

469 
(220) 

504 
(231) 

540 
(208) 

20 375 
(169) 

413 
(188) 

520 
(264) 

318 
(228) 

225 
(127) 

283 
(96) 

338 
(154) 

400 
(148) 

538 
(386) 

348 
(223) 

294 
(152) 

335 
(203) 

408 
(241) 

505 
(324) 

582 
(313) 

21 305 
(130) 

420 
(255) 

531 
(349) 

371 
(174) 

316 
(201) 

272 
(197) 

306 
(173) 

362 
(183) 

503 
(394) 

415 
(216) 

323 
(162) 

292 
(162) 

311 
(160) 

379 
(162) 

463 
(230) 

22 290 
(181) 

322 
(189) 

466 
(370) 

453 
(232) 

417 
(351) 

284 
(135) 

213 
(78) 

295 
(147) 

408 
(265) 

441 
(217) 

362 
(135) 

341 
(249) 

297 
(173) 

326 
(278) 

401 
(182) 

23 322 
(200) 

327 
(198) 

375 
(220) 

478 
(220) 

452 
(235) 

375 
(219) 

281 
(137) 

225 
(105) 

346 
(168) 

531 
(289) 

458 
(238) 

406 
(265) 

307 
(134) 

300 
(166) 

336 
(167) 

24 395 
(243) 

336 
(174) 

449 
(432) 

500 
(196) 

440 
(150) 

446 
(218) 

399 
(261) 

320 
(150) 

268 
(184) 

556 
(255) 

470 
(195) 

424 
(162) 

387 
(154) 

358 
(206) 

304 
(132) 

25 524 
(292) 

658 
(838) 

638 
(471) 

492 
(1116) 

454 
(455) 

552 
(659) 

577 
(510) 

689 
(1025) 

603 
(405) 

308 
(286) 

502 
(784) 

528 
(391) 

567 
(493) 

569 
(387) 

656 
(584) 

26 472 
(459) 

486 
(266) 

531 
(306) 

340 
(171) 

318 
(137) 

368 
(224) 

387 
(181) 

555 
(467) 

592 
(348) 

321 
(196) 

267 
(150) 

330 
(181) 

397 
(215) 

491 
(224) 

559 
(254) 

27 393 
(257) 

416 
(162) 

470 
(192) 

386 
(144) 

328 
(158) 

318 
(160) 

402 
(317) 

427 
(218) 

501 
(211) 

414 
(200) 

398 
(261) 

228 
(127) 

308 
(120) 

422 
(346) 

514 
(270) 

28 350 
(152) 

404 
(194) 

420 
(214) 

462 
(235) 

409 
(198) 

368 
(297) 

322 
(167) 

339 
(172) 

400 
(175) 

462 
(243) 

416 
(256) 

319 
(251) 

224 
(91) 

314 
(152) 

465 
(443) 

29 409 
(243) 

460 
(352) 

375 
(149) 

525 
(363) 

427 
(185) 

419 
(219) 

337 
(137) 

303 
(117) 

375 
(209) 

522 
(238) 

454 
(208) 

405 
(217) 

321 
(180) 

266 
(149) 

375 
(271) 

30 479 
(226) 

425 
(214) 

404 
(196) 

567 
(364) 

631 
(568) 

497 
(270) 

432 
(217) 

380 
(188) 

388 
(310) 

561 
(233) 

624 
(457) 

452 
(174) 

467 
(348) 

368 
(273) 

307 
(232) 

 



 

 147 

Appendix E  
MIME Evaluation Results 

Table 14. The entry speed measurements (in wpm) from each participant for both techniques and each of the ten sessions. 

Tech. QWERTY          MIME          
Sess. 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

1 18.48 20.06 20.93 19.84 21.94 21.14 21.90 19.54 14.80 21.52 8.03 10.18 12.26 12.02 14.66 14.20 15.25 14.92 12.69 16.52 
2 21.04 23.63 21.86 26.32 24.48 25.56 26.14 26.71 25.24 24.77 10.41 12.45 14.87 16.43 16.03 16.62 17.32 15.94 16.56 19.01 
3 23.29 23.41 24.78 24.63 24.76 19.83 23.21 23.21 25.98 24.93 7.68 8.53 9.71 10.70 10.55 10.77 12.63 14.13 13.61 15.68 
4 21.33 20.66 23.29 23.62 24.31 22.94 23.71 23.76 22.41 22.08 10.34 11.94 13.69 14.23 16.09 15.50 16.91 16.86 18.75 18.53 
5 26.53 28.01 22.86 26.89 26.81 26.43 28.51 27.34 27.15 25.29 8.98 13.14 12.72 12.53 14.24 15.77 15.79 16.27 17.45 16.98 
6 22.09 23.31 20.94 22.68 24.42 23.85 21.02 20.46 23.16 22.90 8.43 9.81 10.44 12.52 13.84 14.51 15.00 14.02 14.75 16.32 

Mean 22.13 23.18 22.44 24.00 24.45 23.29 24.08 23.50 23.12 23.58 8.98 11.01 12.28 13.07 14.23 14.56 15.49 15.36 15.64 17.17 
SD 2.68 2.82 1.50 2.58 1.55 2.53 2.79 3.17 4.44 1.62 1.16 1.77 1.94 2.00 2.03 2.05 1.67 1.18 2.34 1.32 

 

Table 15. The total error rate (in %) from each participant for both techniques and each of the ten sessions. 

Tech. QWERTY         MIME          
Sess. 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

1 3.59 3.03 3.99 3.66 3.63 2.44 3.54 1.43 4.90 4.69 1.80 1.21 1.07 2.09 1.51 2.14 1.50 0.96 2.89 2.00 
2 5.12 3.05 5.48 4.18 4.97 4.85 3.91 5.12 4.50 5.33 1.11 0.88 1.59 0.93 1.49 1.54 2.26 1.30 1.40 1.87 
3 3.07 3.64 2.39 2.98 2.66 3.66 4.05 2.84 3.90 3.50 1.29 1.35 2.39 2.68 3.88 2.14 2.82 1.38 2.62 1.47 
4 7.24 5.60 6.82 5.99 7.26 7.51 8.58 4.01 9.36 6.37 1.56 2.05 2.11 2.34 1.18 1.95 3.88 1.71 1.21 2.77 
5 4.26 4.50 9.85 4.37 3.76 4.48 5.29 3.70 4.74 6.03 0.72 1.22 1.70 1.41 2.09 1.13 1.42 1.29 1.32 1.48 
6 4.69 4.34 7.36 5.11 5.06 3.91 5.65 10.30 3.11 5.10 0.74 0.94 2.17 0.96 1.27 0.91 1.16 2.32 1.33 0.60 

Mean 4.66 4.03 5.98 4.38 4.56 4.48 5.17 4.57 5.09 5.17 1.20 1.28 1.84 1.74 1.90 1.64 2.17 1.49 1.80 1.70 
SD 1.46 0.99 2.63 1.06 1.60 1.70 1.86 3.07 2.20 1.02 0.44 0.42 0.48 0.74 1.02 0.53 1.04 0.47 0.75 0.72 
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Table 16. The uncorrected error rate (in %) from each participant for both techniques and each of the ten sessions. 

Tech. QWERTY          MIME          
Sess. 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

1 0.88 0.63 2.30 1.76 2.68 1.40 2.19 0.85 2.39 3.90 0.39 0.83 0.82 1.31 0.75 1.17 0.53 0.32 2.08 1.50 
2 0.90 0.23 0.99 1.09 1.04 0.93 1.12 1.32 1.17 1.55 0.32 0.18 0.40 0.10 0.08 0.36 0.72 0.24 0.39 1.03 
3 0.23 0.49 0.78 0.15 0.10 0.27 0.58 0.62 0.69 0.36 0.42 0.35 0.78 0.35 0.76 0.39 0.90 0.08 0.64 0.00 
4 0.53 0.82 1.18 0.65 1.58 0.41 0.71 0.29 0.56 0.72 0.21 1.31 0.66 0.53 0.37 0.59 1.74 0.44 0.69 0.44 
5 1.08 1.32 0.73 1.67 1.23 1.69 2.84 1.32 0.82 1.02 0.26 0.35 0.76 0.88 0.72 0.64 0.35 0.35 0.27 0.85 
6 1.45 1.10 0.45 0.51 0.84 0.40 0.58 1.63 0.26 0.35 0.10 0.27 0.71 0.42 0.42 0.18 0.43 0.82 0.23 0.08 

Mean 0.84 0.77 1.07 0.97 1.25 0.85 1.33 1.01 0.98 1.32 0.28 0.55 0.69 0.60 0.52 0.55 0.78 0.38 0.72 0.65 
SD 0.42 0.40 0.65 0.65 0.86 0.59 0.96 0.50 0.75 1.35 0.12 0.44 0.15 0.43 0.28 0.34 0.51 0.25 0.70 0.58 

 

Table 17. The corrected error rate (in %) from each participant for both techniques and each of the ten sessions. 

Tech. QWERTY          MIME          
Sess. 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

1 2.71 2.40 1.69 1.90 0.95 1.05 1.35 0.58 2.50 0.79 1.41 0.38 0.25 0.79 0.76 0.97 0.97 0.63 0.81 0.51 
2 4.22 2.82 4.49 3.08 3.93 3.92 2.79 3.80 3.34 3.78 0.79 0.70 1.19 0.83 1.42 1.18 1.54 1.05 1.02 0.84 
3 2.84 3.15 1.61 2.83 2.56 3.39 3.47 2.22 3.21 3.15 0.87 1.01 1.61 2.33 3.11 1.76 1.92 1.30 1.98 1.47 
4 6.70 4.78 5.63 5.34 5.68 7.10 7.87 3.72 8.80 5.65 1.35 0.74 1.45 1.82 0.81 1.36 2.14 1.27 0.52 2.33 
5 3.18 3.18 9.12 2.70 2.54 2.79 2.45 2.38 3.92 5.02 0.46 0.87 0.93 0.53 1.37 0.49 1.07 0.94 1.05 0.62 
6 3.25 3.24 6.92 4.60 4.22 3.51 5.07 8.68 2.85 4.75 0.64 0.68 1.46 0.54 0.85 0.73 0.73 1.51 1.09 0.51 

Mean 3.81 3.26 4.91 3.41 3.31 3.63 3.83 3.56 4.10 3.86 0.92 0.73 1.15 1.14 1.39 1.08 1.39 1.12 1.08 1.05 
SD 1.51 0.81 2.96 1.29 1.65 1.98 2.33 2.77 2.35 1.75 0.38 0.21 0.50 0.75 0.89 0.45 0.56 0.31 0.49 0.72 
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Appendix F  
Box Plots of Performance Results 

 
Figure 60. Accuracy values gathered by TEMA, corresponding to Figure 41. 

 
Figure 61. Accuracy values gathered by TEMA, corresponding to Figure 42. 
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Figure 62. Entry speed values for the feedback user study, corresponding to Figure 44. 

 

 
Figure 63. Entry speed values for the feedback user study, corresponding to Figure 45. 
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Figure 64. Error rates for the first and last MIME sessions, corresponding to Figure 57. 

 
Figure 65. Mental workload scores for the MIME user study, corresponding to Figure 58. 
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Figure 66. Physical workload scores for the MIME user study, corresponding to Figure 58. 

 
Figure 67. Temporal workload scores for the MIME user study, corresponding to Figure 58. 
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Figure 68. Performance workload scores for the MIME user study, corresponding to Figure 58. 

 
Figure 69. Effort workload scores for the MIME user study, corresponding to Figure 58.. 
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Figure 70. Frustration workload scores for the MIME user study, corresponding to Figure 58. 
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