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ABSTRACT 

Technical advancements involving the pervasive cell phone make it a viable computing 

platform. As such, the input of textual information is vital. Use of ambiguous keypads 

preserves the device’s portable nature by mapping multiple letters to a single key. Metrics 

exist to assess such keypads, but they do not account for the physical resources employed 

by keypads, or for the perceptual and cognitive load placed on the user. Furthermore, 

existing tools typically encapsulate only one metric, making detailed evaluation 

cumbersome and time-consuming. 

This thesis outlines a new metric that quantifies a keypad’s efficiency using the 

number of text entry keys it employs. It also presents a revised performance model that 

incorporates perceptual and cognitive timing values to reflect actual practice. 

Encompassing both contributions is an original toolkit that simplifies and streamlines 

analysis of ambiguous keypads. 
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Chapter 1  
Introduction 

Mobile devices such as personal digital assistants (PDAs) and mobile phones (a.k.a. cell 

phones) are immensely popular, with worldwide first quarter 2006 sales of approximately 

228.2 million (Shirer, Baker, & Llamas, 2006; Shirer & Llamas, 2006). However, the 

mobile phone occupies an overwhelming preference, as its sales over the same timeframe 

dwarf those of PDAs by a ratio of 150:1 (Shirer et al., 2006; Shirer & Llamas, 2006). 

However, despite its name, the mobile phone’s functionality is not limited to facilitating 

voice communication. Modern features, such as the ability to email, instant message, 

navigate the Internet, manage personal contacts, play music files, take pictures, capture 

video, and play video games, has led to the proliferation of mobile phones as both 

portable communication tools and portable entertainment units. With the ability to add 

contact information, edit song details, email, and chat, text entry on mobile phones 

possesses considerable importance. In addition, mobile text entry is integral to the 

established practice of sending Short Message Service (SMS) messages (a.k.a., sending 

text messages or texting). Mobile text entry is so significant, that, as of September 2005, 

an estimated 89 billion text messages were sent per month worldwide (Cellulist). 

Furthermore, a report cites this dextrous task as the reason for increased incidences of 

repetitive stress injury (RSI) in both adults and in children as young as eight years old 

(BBC, 2006). 
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As a consequence of mobile text entry’s prevalence, researchers and device 

manufacturers are seeking techniques to improve the efficiency and performance of 

mobile text entry. To that end, this thesis presents new metrics to characterise text entry 

on mobile devices: Chapter 2 offers a quantification of a technique's efficiency, and 

Chapter 3 posits a performance prediction model that accounts for typical cognitive and 

perceptual processes. This thesis then presents TnToolkit, an innovative tool that 

combines established metrics with those in this thesis. Chapter 4 expounds on the features 

of TnToolkit, such as its ability to quickly and easily evaluate existing text entry 

implementations and to aid in the design of new techniques. Though each chapter 

concludes with a summary of work mentioned therein, Chapter 5 describes conclusions 

that span multiple chapter topics and proposes future research work. 

The form of mobile text entry addressed in this thesis involves ambiguous 

keypads (a.k.a., reduced keyboards) with disambiguation technologies, as typical of most 

mobile devices. The remainder of this chapter introduces the ambiguous keypad and 

details various text entry techniques that this thesis references. 

1.1 Ambiguous Keypads 

Ambiguous keypads are those that assign multiple characters to a single key. 

Consequently, the mobile device can utilize fewer keys, allowing designers to enlarge 

each key without increasing the space occupied by the entire keypad (i.e., its footprint). 

Furthermore, compared to a mini QWERTY keypad (where each character has its own 



 

minute key), the enlarged keys of an ambiguous keypad require less dextrous movements, 

and are therefore less likely to promote RSI (BBC, 2006). 

 

Figure 1-1: The “key-amgibuity continuum” (MacKenzie & Soukoreff, 2002b). 

A paper by MacKenzie and Soukoreff (2002b) presents actual and theoretical 

keyboard layouts in a “key-ambiguity continuum” (Figure 1-1). At one extreme is a 

layout that assigns each character its own key, distinguishing between upper- and lower-

case letters. At the other extreme is a purely theoretical layout with all letters mapped to 

 3 
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one key. Consequently, it deems the QWERTY keyboard slightly ambiguous, as a key 

(with use of the SHIFT modifier) can correspond to an upper- and a lower-case letter, a 

number and a symbol, or multiple punctuations. However, text entry models usually 

ignore entry of numbers and punctuations, and assume that all letters are lower-case 

(MacKenzie & Soukoreff, 2002b). Thus, the QWERTY keyboard is generally considered 

non-ambiguous. 

Mapping multiple characters to a single key creates ambiguity, as a single 

keystroke could mean one of several characters (hence the term “ambiguous keypad”). 

Initially, this required users to select the desired character by tapping a key multiple 

times; this is known as the Multi-tap technique. Each key press displays the next 

character associated with that key. The user selects a character by pausing for a timeout 

period, or by pressing another key. 

Contemporary techniques employ language-based disambiguation (a.k.a., 

dictionary-based disambiguation), wherein users press a key only once for each letter. By 

using a corpus of the target language, the disambiguation algorithm maps sequences of 

keystrokes to actual words. Occasionally, a collision occurs – a key sequence maps to 

multiple words. Disambiguation techniques employ a “NEXT” key to allow the user to 

cycle through possible words and select the intended one. To enter non-dictionary words, 

users can still resort to using the Multi-tap technique. Furthermore, to minimize reliance 

on multi-tap, users can typically augment a disambiguation technique’s corpus with new 

words. 
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1.2 Text Entry Techniques 

The subsequent subsections describe various text entry techniques – the keypad layout 

and disambiguation method. Though each technique incorporates its own proprietary 

(and sometimes user-expandable) corpus, this thesis applies the following (static) 

independent corpora to allow for consistent comparisons: 

• BNC1: A corpus based on the 9022 most frequent words in the British 

National Corpus (BNC; Silfverberg, MacKenzie, & Korhonen, 2000). 

• BNC2: A corpus based on the 64 566 most frequent words in the British 

National Corpus (BNC; MacKenzie, 2002). 

• SMS: A corpus with 7189 distinct words representing text messaging 

vocabulary (How & Kan, 2005). The inclusion of this corpus aims to 

address the concern that standard corpora fail to reflect the actual vernacular 

employed by mobile users (Soukoreff & MacKenzie, 2003). 

 To allow for further consistency in comparisons, this thesis will not explore 

technique enhancements such as word completion and word prediction. Such features are 

not available with all implementations and unnecessarily complicate text entry models. 

For example, the corpus changes to reflect a user’s written vocabulary and the input 

required for a word becomes dependent on those previously entered. 

There exist numerous ambiguous keypads in academic literature and commercial 

devices. However, the following ones are discussed throughout this thesis: 



 

1.2.1 T9 

Developed by Tegic Communications (www.tegic.com), T9 is available on more than 

800 million mobile handsets worldwide and in more than 50 languages (T9). T9 (which 

stands for “Text on 9 keys” (T9)) uses the ubiquitous standard telephone keypad (Figure 

1-2) (officially known as ITU E.161 (Hissen)) for text entry. When collisions occur, T9 

lists all possible words (i.e., all words that map to the entered key sequence) in 

descending order of frequency in the corpus. For example, the key sequence 2-2-5-3 

could represent the word cake, able, bald or calf. Consequently, additional input is 

required to identify the desired one. Entering “able”, affixed with the obligatory space 

character, would involve one keystroke for each letter, one press of the NEXT-key to 

select “able” from the list, and one press of the SPACE-key to terminate the word’s entry. 

The NEXT-key sometimes differs between implementations, but is typically the *-key.  

 
Figure 1-2: An example of the standard mobile telephone keypad. 
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1.2.2 SureType 

The SureType keypad (Figure 1-3) (BlackBerry) maps the traditional QWERTY layout to 

15 keys by assigning pairs (typically) of adjacent letters to the same key. Like T9, words 

involved in a collision appear in descending order of frequency in the corpus. To select 

the intended word, the user may use the device’s scroll wheel or the *-key as the 

NEXT-key. 

 
Figure 1-3: The SureType keypad (www.blackberry.com). 

1.2.3 EQx 

EQx (Eatoni) (which stands for “Eatoni QWERTY with x columns”) attempts to map the 

QWERTY layout to the available keys on a device while minimizing the probability of 

collisions. For example, while the letters “L” and “U” are not adjacent on QWERTY 

keyboards, they are mapped to the same key in the EQ3 (Figure 1-4) and EQ6 (Figure 

1-5) layouts. Consequently, the layout is not strictly QWERTY, but rather QWERTY-like. 

Available in 165 languages, EQx operates in two modes: WordWise and 

LetterWise (Eatoni). Like T9 and SureType, WordWise is a dictionary-based 

disambiguation technique. However, to enter a word not in the corpus, EQx uses 

 7 



 

LetterWise instead of Multi-tap. With a single key press, LetterWise predicts the intended 

character based on those previously entered and the statistical distribution of characters 

within the target language (MacKenzie, Kober, Smith, Jones, & Skepner, 2001). While 

usually accurate, the user can press the NEXT-key to enter the next likely character 

mapped to that key. 

 
Figure 1-4: An implementation of EQ3 on a Nokia 6680. 

 
Figure 1-5: An example of the EQ6 keypad layout. 
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Chapter 2  
Quantifying Ambiguous Keypad Efficiency 

Mobile devices that provide key-based input are ubiquitous. However, their design poses 

a dilemma: large keypads provide desktop practicality, but portable devices favour a 

small form factor. By mapping multiple letters to a single key, ambiguous keypads 

provide a convenient balance. (In addition, their reduced size also facilitates text entry by 

users with impaired motor skills (Koester & Levine, 1994; Kuhn & Garbe, 2001; Lesher, 

Moulton, & Higginbotham, 1998).) However, despite their proliferation, there exists no 

measurement to quantify a technique’s approach to combining functionality and 

compactness. 

This chapter first presents a new metric that combines a technique’s keystrokes 

per character (KSPC) measurement with the number of keys it employs. The result is a 

key-character mapping efficiency (KCME) value that developers can calculate in the 

development stages of a new technique, and is representative of the average keystrokes 

and physical resources (i.e., keys) it requires. This chapter then evaluates and compares 

the KCME of several text entry techniques. 

2.1 Quantifying Efficiency 

Mobile devices employ a variety of text entry methods. Traditional BlackBerry devices 

use a miniature QWERTY keypad, and though this technique requires at least 27 keys for 

text entry (one for each letter of the English alphabet and one for the SPACE character), it 
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allows users to enter characters with a single keystroke. At the opposite extreme, some 

devices (e.g. early-model pagers) use only a few keys to select characters from a list. 

However, the consequence of so few keys is that one typically requires many keystrokes 

to enter a character. Ambiguous keypads allow for the use of fewer than 27 keys for text 

entry, though it typically requires a few supplementary keystrokes to disambiguate input. 

A characteristic of text entry techniques is the keystrokes-per-character (KSPC) 

measurement. Using a corpus of the target language, it describes the average number of 

keystrokes required by the user to input a character in a given language using a given 

interaction technique (MacKenzie, 2002). However, KSPC does not factor-in the spatial 

requirement (i.e., the number of keys used) for a text input technique, which is significant 

in the design of mobile devices. For example, take the following two mobile text entry 

techniques: 

Technique A: 20-key keypad with a KSPC of 1.0001 
Technique B: 10-key keypad with a KSPC of 1.0064 

Based on KSPC alone, Technique A appears more favourable. However, when 

also considering keypad size, Technique B’s KSPC value is only 0.63% greater and uses 

half the number of keys. This example clearly illustrates the value of integrating both a 

technique’s KSPC and its number of keys into a quantitative metric. By using the number 

of keys rather than the actual space occupied by the keypad, calculations employ 

technique-specific details, which are static, rather than implementation details, which 

often vary between device models. Consequently, this maintains the simplicity of the 

metric. 



 

Equation 2-1 represents this author’s metric for quantifying the key-character 

mapping efficiency (KCME) of a mobile text entry technique. While (with respect to 

engineering) efficiency can represent the ratio of work performed to energy expended, 

this metric represents efficiency using the average keystrokes and the physical resources 

(i.e., keys) required by a specific mobile text entry technique. It combines a technique’s 

KSPC27 value (calculated in this thesis using BNC1) with the number of keys it utilizes 

and expresses efficiency in relation to the omnipresent QWERTY technique. The variable 

numKeys represents the number of keys employed by a technique for text entry (i.e., 

those associated with letters, the SPACE-key, and the NEXT-key). Although similar to 

T-factor (MacKenzie & Tanaka-Ishii, in press), this value also includes the NEXT-key, 

and thus represents T-factor+1. 

 

AA

AA

QWERTYQWERTY
A

KSPCnumKeys

KSPCnumKeys
KSPCnumKeys

KCME

27*
1*27

27*
27*

=

=
 

Equation 2-1: The efficiency metric for Technique A, relative to QWERTY. 

6828.2
1.0064*10
27

27*
1*27

99
9

=

=

=
TT

T KSPCnumKeys
KCME

 

Equation 2-2: Calculating KCME for T9. 
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6842.1
0020.1*16

27

27*
1*27

=

=

=
SureTypeSureType

SureType KSPCnumKeys
KCME

 

Equation 2-3: Calculating KCME for SureType. 

2449.2
0023.1*12

27

27*
1*27

33
3

=

=

=
EQEQ

EQ KSPCnumKeys
KCME

 

Equation 2-4: Calculating KCME for EQ3. 

3499.1
0001.1*20

27

27*
1*27

66
6

=

=

=
EQEQ

EQ KSPCnumKeys
KCME

 

Equation 2-5: Calculating KCME for EQ6. 

 

KCME values greater than 1 represent superior efficiency, while values less than 

1 represent inferior efficiency with respect to the QWERTY technique. However, this need 

not be the case. Equation 2-6 reveals how efficiency can be calculated using a different 

technique as the benchmark. 
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Equation 2-6: The efficiency metric for Technique A, relative to Technique B. 

2.2 Comparison of Ambiguous Text Entry Techniques 

Figure 2-1 illustrates the significance of KCME values. Techniques that map to locations 

on the blue power curve are just as efficient as QWERTY and thereby represent KCME 

values of one. Techniques that map to locations below the curve are more efficient than 

QWERTY and have values greater than one, while those above the curve are less efficient 

than QWERTY and have values less than one. Theoretically, the closer to the origin a 

technique maps, the more efficient it is. 
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Figure 2-1: This graph illustrates the significance of KCME values. 

In addition to the aforementioned input techniques, there exist additional 

ambiguous keypad designs in academia (Figure 2-2 to Figure 2-9 inclusive). While some 

strive to reduce the number of keystrokes required on a 12-key (i.e., telephone) keypad, 

others facilitate text entry using even fewer keys. 

 
Figure 2-2: The Stick (Green, Kruger, Faldu, & Amant, 2004) keypad. 
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Figure 2-3: The QP10213 (MacKenzie & Tanaka-Ishii, in press) keypad. 

 
Figure 2-4: The Qwerty-Like Phone Keypad (QLPK) (Hwang & Lee, 2005). 

 
Figure 2-5: The Alphabetically Constrained Design (ACD) (Gong & Tarasewich, 2005) 

keypad. 
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Figure 2-6: The Letters on 2 Keys (L2K) (MacKenzie & Tanaka-Ishii, in press) keypad. 

 
Figure 2-7: The Letters on 4 Keys (L4K) (MacKenzie & Tanaka-Ishii, in press) keypad. 

 
Figure 2-8: The Letters on 6 Keys (L6K) (MacKenzie & Tanaka-Ishii, in press) keypad. 

 
Figure 2-9: The TouchMeKey4 (TMK4) (Tanaka-Ishii, Inutsuka, & Takeichi, 2002) 

keypad. 
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SPACE NEXT
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abcdefg nopqrstu

SPACE NEXT
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SPACE NEXT
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Table 2-1 tabulates the KCME values of four mobile text entry techniques. By 

mapping only a few letters (and sometimes only one) to a key, SureType, EQ3, and EQ6 

yield KSPC values very close to one. However, while these technologies achieve the best 

KSPC measurements, accounting for the large number of keys required to achieve such 

results (16, 12, and 20 keys, respectively) reveals KCME values that are not the best. 

Instead, the most efficient techniques evaluated are T9 (commercial) and L2K 

(academic). While they do not possess the best KSPC measurement amongst the group 

(L2K has the worst), their limited use of physical resources (in the form of only 10 and 4 

keys, respectively) benefits their efficiency. 

 

Technique Number of Keys KSPC27 Value KCME Value 
L2K 4 1.5471 4.3629 

TMK4 6 1.0512 4.2809 
L4K 6 1.0670 4.2176 
L6K 8 1.0288 3.2804 
ACD 10 1.0058 2.6846 
T9 10 1.0064 2.6828 

QP10213 11 1.0043 2.4440 
QLPK 11 1.0054 2.4414 
Stick 11 1.0055 2.4412 
EQ3 12 1.0023 2.2449 

SureType 16 1.0020 1.6842 
EQ6 20 1.0001 1.3499 

Table 2-1: Characteristics and KCME values of mobile text entry methods. 
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2.3 Summary 

With the popular use of mobile devices for text messaging, instant messaging, and 

emailing, efficient methods of text entry is essential. Furthermore, while metrics exist to 

evaluate text entry throughput, none exists to appraise a technique’s balance of 

functionality and compactness. This chapter presented KCME, a new metric for assessing 

such efficiency, which combines a technique’s KSPC measurement with the number of 

keys it employs. Using this metric, T9 is the most efficient commercial input method with 

a KCME value of 2.68, and L2K is the most efficient academic design with a value of 

4.36. Though its KSPC measurement is the highest amongst evaluated techniques, L2K 

uses only 4 keys for text entry. 

By using only the key-character mapping and the number of keys required by a 

text entry technique, evaluators can calculate an efficiency measurement during the 

design phase, without the need for implementation details. 
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Chapter 3  
A Revised Performance Model for 
Ambiguous Input 

Previous research has yielded models to predict upper-bound text entry performance in 

words per minute (wpm) (MacKenzie & Soukoreff, 2002a; Silfverberg et al., 2000). In 

addition, while metrics gathered from such models can benefit the design of improved 

techniques, some believe that enhancing a technique’s ease-of-use (and, consequently, its 

maximum achievable performance) can actually benefit the user’s writing style (Yamada, 

1980). 

However, research illustrates the disparity between predicted and actual 

performance (James & Reischel, 2001). Furthermore, despite the popular use of 

ambiguous keyboards for mobile text entry, no previous model specifically accounts for 

the mental overhead incurred by the associated perceptual and cognitive processes. The 

revised model, presented as the topic of this chapter, increases the time to enter each 

word in the corpus to account for the performance cost of perceptual and cognitive loads 

on the user. 

Research by Pavlovych and Stuerzlinger (2004) takes a similar approach, but with 

significant differences. Firstly, their operators and timing values differ from those 

employed by the revised model. While their timing values include empirically determined 

visual scan time, they apply specifically to one-thumb use of a 12-key telephone keypad. 
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Application of their model to other layouts would require additional empirical 

investigation to determine its applicable timing values. Furthermore, while their 

methodology models novice use, the revised model predicts the upper-bound text entry 

performance with various levels of task familiarity. In addition, their model concentrates 

on characters entered. While this makes it adaptable for various forms of text entry, this 

author’s revised model focuses on inputted words, and thus, is more suitable for the 

conventional ambiguous text entry techniques presented in this thesis. 

The first section of this chapter introduces concepts related to this research. 

Subsequent sections present the revised model in detail, evaluate it, and reveal the 

evaluation results. 

3.1 Topic Primer 

This section gives brief introductions to three integral concepts related to this research: 

Fitts’ law, the Model Human Processor (MHP), and the Keystroke-Level Model (KLM). 

3.1.1 Fitts’ Law 

Prevalent in the field of Human Factors and Human-Computer Interaction, Fitts’ law 

(Fitts, 1954) predicts the movement time (MT) between two targets, each of width W, at a 

distance (a.k.a. amplitude) A. Its principle component is a quantification of the movement 

task’s index of difficulty (ID). (Values of ID have the unit “bits”, but do not relate to 

binary digits.) Though subtle variations exist in equations to calculate ID (MacKenzie, 



 

1992; MacKenzie, 2003), this research employs the following version, introduced by 

MacKenzie (1989): 

⎟
⎠
⎞

⎜
⎝
⎛ += 1log2 W

AID  

Equation 3-1: The equation for ID. 

The Fitts’ law equation for movement time is the following: 

IDbaMT ×+=  

Equation 3-2: The Fitts' law equation for MT. 

Empirical tests (typically using linear regression (MacKenzie, 2003)) yield the 

intercept and slope coefficients of this linear equation. If they have units of milliseconds 

(ms) and ms/bit, respectively, then the prediction of MT is in ms. 

3.1.2 Model Human Processor 

Proposed by Card, Moran, and Newell, the Model Human Processor (MHP) (1983) 

models human mental processes. These include perceiving a stimulus, and accessing 

short-term memory (STM) and long-term memory (LTM). For each process, it defines a 

typical duration (a.k.a. timing value), and a range that represents task and participant 

variations. The revised model associates the maximum value in each range with novice 

behaviour, characterised by slower responses to stimuli and hesitancy with the task (with 

respect to typical behaviour). Conversely, the minimum value in each range is associated 
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with expert behaviour, epitomizing quick responses and task proficiency. Table 3-1 

tabulates relevant operators and their associated timing values. 

Operator Description Minimum 
(ms) 

Typical 
(ms) 

Maximum 
(ms) 

tE The time occupied with an eye 
movement 

70 230 700 

tP The delay between the onset of a 
stimulus and perception of that 
stimulus 

50 100 200 

tM The time to send a motor impulse 30 70 100 
tC The time to use the contents of 

STM as input for an operation 
(e.g., accessing LTM) that change 
the contents of short-term memory 

25 70 170 

tS The time to determine if two 
words are the same 

36 47 52 

Table 3-1: MHP operators and their associated timing values. 

3.1.3 Keystroke-Level Model 

Also by Card, Moran, and Newell, the Keystroke-Level Model (KLM) (1980) defines 

operators to model computer input via the keyboard and mouse. 

Operator Description 
K Performing a keystroke or pressing a button 
P Pointing to a displayed target via a mouse 
H Placing or returning one’s hand(s) to a rest position 

on the input device 
D Drawing straight-line segments 
M Mentally preparing for executing physical actions 
R Waiting for a response from the system 

Table 3-2: KLM operators. 

The revised model reasonably assumes entry via only a keypad and that the user’s 

hands are on it prior to input, thus eliminating the pointing, homing, and drawing 
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operators. It also assumes negligible system reaction time, thus eliminating the response 

operator. 

3.2 Perceptual and Cognitive Model 

This section outlines applicable perceptual and cognitive loads associated with text entry 

using ambiguous keyboard. It then presents the revised performance prediction model. 

Throughout this section, “W” represents an example word. The symbol “|W|” represents 

its length and the numbers 0..|W|-1 represent the indices of its letters. 

3.2.1 Applicable Perceptual and Cognitive Loads 

Ambiguous text entry requires the user to expend perceptual and cognitive effort. Visual 

perception is essential for verification of a displayed word. Cognitive processes include 

mental preparation, storing the perceptual input, comparing the displayed word to the 

intended one and determining subsequent action. In general, determining the next action 

can involve complex problem solving. However, for text entry in particular, actions are 

associated with specific conditions (e.g., pressing the SPACE key at the end of a word to 

complete entry). The user must decide whether a particular condition holds, and if so, 

take the appropriate action. An interesting component of mental preparation involves 

spelling. The revised model reasonably assumes the user mentally composes the text to 

enter beforehand and that it exists in STM. However, the contents of STM are commonly 

acoustic in nature (Card et al., 1983) and so the user must fetch the spelling of each word 

from LTM. 



 

 
Figure 3-1: A diagram depicting the processes and decisions involved with 

text entry using an ambiguous keypad. 
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Figure 3-1 depicts the processes and decisions involved with text entry using an 

ambiguous keypad. The user first mentally prepares by retrieving the spelling of the 

word, W, from LTM, noting its first letter, and prepares to take appropriate action. While 

the user takes action to enter this letter, he or she can mentally prepare for the next letter 

in the word. This cycle continues until the user finishes entering the second-last letter 

(indexed |W|-2) and is prepared to enter the last one (indexed |W|-1). The user then enters 

the last letter and transfers eye gaze to the screen. This model assumes that the keypad 

and screen are close enough that this movement involves only a saccade and not an 

associated head movement. The user then compares the displayed word to the intended 

one and presses the NEXT-key if necessary. Pressing the SPACE-key accepts the displayed 

word and terminates its entry. The user can then verify input and continue with the next 

word. 

3.2.2 Mathematical Model 

Parameters inherited from traditional text entry models (Silfverberg et al., 2000) 

(MacKenzie & Soukoreff, 2002a) include Fitts’ law coefficients and the time between 

successive key presses involving alternate thumbs (tMIN) (MacKenzie & Soukoreff, 

2002a). Unless otherwise noted, performance predictions in this thesis employ the 

following parameter values determined by Silfverberg et al. and MacKenzie and 

Soukoreff: a (intercept) = 176 ms, b (slope) = 64 ms/bit (Silfverberg et al., 2000), and 

tMIN = 88 ms (MacKenzie & Soukoreff, 2002a). By incorporating mental timing values 

into the equation for movement time, the revised model simulates this additional load and 
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yields theoretical upper-bound performance predictions that more closely mimic actual 

usage. The revised model derives the necessary components from the MHP. Also of 

paramount importance are the KLM operators of keystroking and mental preparation. 

Keystroking relies on Fitts’ law and mental preparation relies on time to access short-

term memory (STM) and long-term memory (LTM). 

Card, Moran and Newell present their timing values as a typical value within a 

range. The revised model associates minimum and maximum range values with novice 

and expert performance, respectively. However, these terms do not necessarily describe 

the user’s familiarity with text entry in general, but rather the user’s familiarity with a 

specific entry task. With repetition, the time spent on perceptual and cognitive aspects 

decreases as actions become rehearsed, fluid, and natural. This model assumes the 

absence of typographical errors and zero visual scan time (i.e., the user is familiar with 

the employed letter-key mapping and need not search for the key corresponding to the 

desired letter). Researchers had thought that the Hick-Hyman law (Hick, 1952; Hyman, 

1953) for choice reaction time could reliably account for actual visual scan time 

(Soukoreff & MacKenzie, 1995), but that was later refuted (MacKenzie & Zhang, 2001). 

The revised model appears in mathematical form as Equation 3-3. For simplicity, 

it presents the previously mentioned timings as compound variables. Table 3-3 describes 

the variables and their composition. 
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Equation 3-3: The revised model in mathematical form. 

Variable Description 
tW The time to input a word W, indexed 0 .. |W|-1 
M The time to retrieve the spelling of W from LTM; equals tC 
Ai The time to determine the ith letter of W; equals tC 
Ii The time to send a motor impulse to key-in the ith letter of W; equals tM 
E The time occupied with an eye movement; equals tE 
C The time to perceive and store the displayed word in STM (tP + tC), 

compare it to the desired word (tS), and initiate appropriate action 
(tC + tM); equals (tP + 2tC + tS + tM) in total 

Ki The time to key-in the ith letter via Fitts’ law 
n The number of required presses of the NEXT key 

KN The time to press the NEXT key via Fitts’ law 
KS The time to press the SPACE key via Fitts’ law 

Table 3-3: Description of variables composing the revised model. 

Regarding the summation within the large parentheses of Equation 3-3, note that 

the user can perform (Ai+1 + Ii+1) in parallel with Ki for i = 0 .. |W|-2 (i.e., the user can 

prepare for the next letter while keying the current one). Therefore, the revised model 

determines the maximum time between keying letter i and preparing for letter i+1 and 

adds it to the total. The A0 + I0 and K|W|-1 terms appear outside the summation, as they 

apply to the serial boundary cases of the first and last letter, respectively. 

3.2.3 Performance Predictions 

As an example of applying the revised model, suppose an expert user enters the word 

“lazy” using the T9 keyboard. (“lazy” is typically ambiguous and in the phrase, “The 
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quick brown fox jumps over the lazy dog”. Evaluators often use this phrase to evaluate 

text entry, as it contains every letter in the English alphabet.) Mental preparation (M) 

accounts for 25 ms and initiating the first key press (A0+I0) takes 55 ms more. Keying 

each letter requires more time than initiating the next key press (i.e., Ki > Ai+1+Ii+1 for all 

i). Keying in all four letters takes 1017 ms. Moving the user’s gaze to the display costs 70 

ms and comparing the displayed word to the intended one (C) costs an additional 166 ms. 

“lazy” requires one press of NEXT (“jazz” appears first), and that takes 319 ms. The user 

then compares the words again, accepts the displayed word by pressing the SPACE key 

(269 ms) and compares the displayed and intended words one last time to ensure 

acceptance of the word. In total, the revised model predicts that entering “lazy” will take 

2.25 seconds. 

Using software and deriving a word-frequency-keystrokes representation from a 

corpus can simulate text entry. Table 3-4 through Table 3-6 inclusive represent WPM 

performance predictions using the BNC1, BNC2, and SMS corpora, respectively. With 

each corpus, predictions were calculated using the traditional Fitts’ performance model 

(i.e., using “none” of the MHP timings), and this author’s revised performance model 

(i.e., using “expert”, “typical”, and “novice” MHP timings). The software obtained the 

average entry time per character (including spaces) by weighting and summing the 

calculations for all words, and adjusting for word sizes. By multiplying by 5 (the 

accepted word length for measuring typing speeds) and dividing by 60 (the number of 

seconds in a minute), the software calculated a WPM performance prediction 
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(MacKenzie & Soukoreff, 2002b). Cells highlighted in green indicate the highest 

performing technique in that category. (Highlights also illustrate performance differences 

hidden by round off.) Between the corpora, the predictions vary little. In addition, the 

inclusion of MHP timings drastically affects performance. While one-handed T9 

predictions are consistently the lowest, EQ3 predictions are almost always the fastest. Its 

QWERTY-styled letter layout distributes keystrokes amongst the keys and minimizes word 

collisions, thereby reducing the number of presses of NEXT. Furthermore, its small 

footprint keypad minimizes thumb movement, thereby reducing the required movement 

time. 

MHP Timings Used Technique None Expert Typical Novice 
T9 40.8 31.4 23.7 15.9 

T9 (two hands) 62.0 43.9 30.3 18.3 
SureType 64.0 44.5 30.6 18.3 

EQ3 69.1 46.4 31.5 18.5 
EQ6 66.7 45.7 31.2 18.5 

Table 3-4: WPM performance predictions using the BNC1 corpus. 
Green highlights indicate the fastest technique(s). 

MHP Timings Used Technique None Expert Typical Novice 
T9 40.9 31.6 24.1 16.2 

T9 (two hands) 62.2 44.3 30.8 18.7 
SureType 63.8 44.8 31.0 18.7 

EQ3 68.7 46.7 32.0 18.9 
EQ6 66.6 46.0 31.7 18.9 

Table 3-5: WPM performance predictions using the BNC2 corpus. 
Green highlights indicate the fastest technique(s). 



 

 30 

MHP Timings Used Technique None Expert Typical Novice 
T9 40.1 29.6 21.8 14.2 

T9 (two hands) 61.4 41.0 27.4 16.1 
SureType 62.4 41.5 27.7 16.2 

EQ3 68.6 43.6 28.6 16.4 
EQ6 66.2 43.2 28.6 16.6 

Table 3-6: WPM performance predictions using the SMS corpus. 
Green highlights indicate the fastest technique(s). 

3.2.4 Sensitivity Testing 

Sensitivity testing demonstrates how a model’s prediction changes with fluctuations in its 

parameters. A preferred model is one with low sensitivity, where its output changes little 

with such variations (Card et al., 1980; Card et al., 1983; MacKenzie & Soukoreff, 

2002a). Results using the revised model appear in Table 3-7, with each numeric 

parameter varying independently, and nominal values representing two-handed T9 entry 

with the BNC1 corpus and expert MHP timings. 

Variation Parameter 50% 80% 90% 110% 120% 150% 
Intercepts* 21.40% 7.63% 3.69% -3.53% -6.83% -15.55% 

Slopes* 5.52% 2.16% 1.09% -1.09% -2.16% -5.29% 
tMIN 6.15% 2.43% 1.21% -1.28% -2.56% -6.25% 
tE 2.35% 0.93% 0.46% -0.46% -0.91% -2.24% 
tP 3.48% 1.37% 0.68% -0.67% -1.33% -3.27% 
tM 3.06% 1.21% 0.60% -0.59% -1.18% -2.92% 
tC 5.20% 2.03% 1.01% -0.99% -1.96% -4.79% 
tS 2.49% 0.98% 0.49% -0.48% -0.96% -2.38% 

Table 3-7: Percent change in WPM Prediction when independently varying parameters. 
* Left and right parameters varied together. 
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While varying the intercepts alters the prediction by up to 21.4%, such a wide 

variation is unlikely. Variations that are more reasonable reveal a relatively insensitive 

model. Specifically, the addition of MHP components does not adversely affect 

sensitivity, as predictions remain within 5.2% of nominal. This maximum deviation 

occurs when varying tC, because it is the most contributing MHP component in the 

revised model. Conversely, the minimum deviation occurs when varying tE. 

3.3 Evaluation Method 

This section details the methods employed to evaluate the revised model. 

3.3.1 Participants 

The Primary Investigator recruited paid participants by posting flyers on the local 

university campus. Twelve students participated – six males and six females. Ages 

ranged from 18 to 34 years, with an average age of 24 years. Though all participants 

chose to use the mouse in their right hand in the right-handed configuration, one 

participant was actually left-handed. Ten participants used a mouse daily, while two 

primarily used other input devices. Each participant made an appointment at his or her 

convenience that lasted approximately one hour and included a questionnaire. The 

questionnaire gathered demographic information and the participant’s self-described 

experience with text messaging and various input devices. 
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3.3.2 Apparatus 

The workstation for the experiment was a Pentium 4 530 (3 GHz) system with a 17-inch 

LCD monitor and a Logitech Optical Mouse. To avoid extraneous onscreen stimuli, the 

Primary Investigator maximized the program window to fill the entire screen and hid the 

taskbar. The experiment took place in a quiet office environment. 

3.3.3 Design 

This experiment was a 2 x 5 within-subjects design. The first factor was perceptual and 

cognitive load with two levels: Present and Absent, detailed subsequently. The conditions 

were counterbalanced to offset the effects of fatigue and asymmetric transfer of skill 

(e.g., Condition A affecting the result of Condition B significantly more than Condition B 

affects the result of Condition A). 

The second factor was practice, represented by five repetition of flawless input – 

the test program discarded incorrect entry. The purpose of these repetitions was to 

familiarize the participant with the layout and to measure his or her learning over time. 

(The Primary Investigator initially considered ten sessions, but preliminary testing 

yielded test times in excess of two hours, leaving participants exceptionally fatigued.) 

Ten phrases served as input for the text entry tasks and appeared in random order 

without replacement. The phrases originate from a list compiled by MacKenzie and 

Soukoreff (2003). The ten phrases possess a cumulative structure that closely matches 

that of English. The correlation of letter frequency with the corpus is high (98.4%), as is 
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the correlation of words requiring at least one press of NEXT (89.6%). The following are 

the ten selected phrases: 

• rent is paid at the beginning of the month 

• taking the train is usually faster 

• what goes up must come down 

• the store will close at ten 

• have a good weekend 

• this is a very good idea 

• our fax number has changed 

• thank you for your help 

• the early bird gets the worm 

• the library is closed today 

3.3.4 Procedure 

This revised model yields a theoretical upper-bound performance prediction. 

Furthermore, it assumes the user is familiar with the employed letter-key mapping (i.e., 

zero scan time) and performs flawlessly (i.e., no typographical errors). Consequently, 

direct comparisons between the predicted and actual performance are impractical using 

possibly novice participants in a short-term study such as this. Because the introduction 

of perception and cognition undoubtedly results in a performance decrease in both 

predicted and actual situations, a feasible alternative was to evaluate the revised model by 

comparing its predicted relative decrease to the actual relative decrease (both measured in 

percent). This study simulated a text entry condition with normal perceptual and 

cognitive load, called the Present Condition, and a condition with minimal load, called 



 

the Absent Condition. Furthermore, the revised model predicted text entry performance 

under similar conditions. (Timing values of zero simulated performance without 

perceptual and cognitive load.)  

Because of practical difficulties in gathering text entry metrics on actual mobile 

devices, a workstation, mouse, and onscreen telephone keypad simulated mobile text 

entry. Figure 3-2 is a screenshot of the test program used. This method reproduces the 

same perceptual and cognitive components present with mobile device input. Though the 

involved movements differ, predicting performance for a mobile device would require 

only the corresponding Fitts’ law coefficients for that device. 

 
Figure 3-2: A screenshot of the test program used to simulate mobile text entry. 

Determining Model Parameters 

To ensure accurate model predictions for the experiment, the Primary Investigator 

measured Fitts’ law coefficients for each participant. He used a short pre-test whereby 

each participant used the mouse to press a single key (e.g., 1) and to alternate between 

seven key pairs (e.g., 1-2, 1-3, 1-6, etc.) quickly and accurately. As the distance between 
 34 
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key pairs increased, so too did the index of difficulty. For each participant, combining 

their collected data points with a linear regression yielded corresponding Fitts’ law 

coefficients (MacKenzie, 2003; Silfverberg et al., 2000). 

As a heuristic for determining which MHP timings to use, the Primary 

Investigator categorized each participant based on experience with telephone keypads and 

text messaging (as gathered from the questionnaire). Table 3-8 lists the assigned values 

and weights. For example, a participant who used a telephone keypad occasionally 

(value = 2) and who wrote text messages occasionally (value = 2), would receive a score 

of 6 (2+2*2) and the classification of “typical”. 

Experience Weight 
 Telephone keypad 1 
 Text messaging 2 
Frequency Value 
 Never 0 
 Rarely 1 
 Occasionally 2 
 Daily 3 
Category Score 
 Novice [0..5] 
 Typical [6,7] 
 Expert [8,9] 

Table 3-8: Weights, values, and scores used to categorize participants. 

Subsequently, the revised model would yield a performance prediction for each 

participant using his or her Fitts data and the MHP timings associated with his or her 

classification. 
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Present Condition 

In this condition, a phrase appeared in the message area of the test program. The phrase 

disappeared once text entry began. This encouraged cognitive processes by simulating the 

typical entry of a message from memory. Once the participant had memorized the phrase, 

he or she began by pressing the 0-key (also the SPACE-key) to start the timer and entered 

the phrase in the text area by using the mouse and onscreen keypad. In reality, entering 

ambiguous text on a mobile device displays disambiguated words represented by the 

keystrokes thus far. To avoid such extraneous perceptual stimulation, common practice is 

to ignore the display until the user reaches the end of the word. The test program 

enforced this practice by displaying disambiguated words only after the number of 

keystrokes entered equalled that of the target word. 

The Primary Investigator instructed participants to proceed as fast as possible 

while attempting correct input and paying attention to the correctness of the input. After 

each word, the participant compared the displayed word to the intended one. At any time, 

the participant could accept the displayed word by pressing the 0-key, display words 

represented by the same keystrokes by pressing the *-key, or clear the entry by pressing 

the #-key. This simulated the actual mental tasks required when using an ambiguous 

keyboard. If a participant accepted an incorrect word, it disappeared and the participant 

had to enter the correct word. To encourage participants to attend to the displayed word 

(instead of relying solely on the keystrokes pressed), the test program randomly (with a 
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probability of 1/50) inserted a typographical error into the input. The Primary 

Investigator informed participants of this before starting. 

At the end of the phrase, a dialog box appeared encouraging the participant to 

“take a break”. After closing the dialog, the next phrase appeared and input continued as 

just described. A session ended after the participant entered all ten phrases and the next 

session began with the same ten phrases in a newly randomized order. The participant’s 

wpm performance represents the best time for each phrase over all sessions. 

Absent Condition 

In this condition, a single word from an input phrase appeared in the message area for the 

participant to enter repeatedly five times – once for each session. The immediate 

repetition aimed to minimize cognitive load. To discourage visual feedback, the word 

disappeared once text entry began. This was to prevent visual comparison between the 

entered and intended word. To ensure an equal number of keystrokes in both conditions, 

ambiguous words appeared with the appropriate number of “*” characters appended. The 

participant had to enter such characters accurately. 

The Primary Investigator instructed participants to proceed as fast as possible 

while attempting correct input. After memorizing the word, the participant began by 

pressing the 0-key to start the timer and entered the word in the text area by using the 

mouse and onscreen keypad. At the end of the word, the participant pressed the 0-key 

again to end entry for this session and begin entry for the next one. Pressing the 0-key 

aimed to demarcate the beginning and end of entry, and to simulate the typical preceding 
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and terminating space character. After five repetitions, a dialog box appeared 

encouraging the participant to “take a break”. After closing the dialog box, the next word 

in the phrase appeared and input continued. The participant’s wpm performance 

represents the best time for each word over all sessions. 

 

3.4 Results and Discussion 

This section presents the results of the evaluation and discusses their implications. Table 

3-9 presents the MHP timing category, expertise score, and Fitts data used for each 

participant. 

Participant Expertise (score) Intercept (ms) Slope (ms/bit) 
1 Novice (0) 169.00 106.88 
2 Novice (2) 122.25 93.00 
3 Novice (5) 156.61 103.13 
4 Novice (2) n/a n/a 
5 Typical (6) 162.92 118.98 
6 Expert (9) 150.28 110.84 
7 Novice (4) 142.27 142.29 
8 Novice (3) 121.83 102.59 
9 Novice (2) 152.71 73.77 
10 Typical (7) 99.82 119.77 
11 Typical (7) 107.00 119.32 
12 Expert (9) 201.12 95.07 

Table 3-9: The model parameters used for each participant. 

The Fitts’ law data collected from Participant 4 yielded weak linear regression 

results (R2 value of 0.08). (Apparently, that participant did not understand the instructions 
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during the pre-test.) Consequently, the model could not produce reliable results for that 

participant. 

3.4.1 Performance 

As expected, perceptual and cognitive load significantly affected performance 

(F1,10 = 120.58, p < .0001). Participants mean entry rate was 18.0 wpm for the Present 

condition and 32.0 wpm for the Absent condition. The lower performance results in the 

Present condition are likely due to the addition of perceptual and cognitive processes to 

the interaction. For each participant, the Primary Investigator calculated the observed 

performance and compared this against the revised model’s predictions. Impressively, on 

average, the performance predicted by the revised model (i.e., with perceptual and 

cognitive loads present) differed from the average observed performance by only 0.5 

wpm (3.0%)! Evidently, concerns regarding novice participants and the study’s short-

term nature were unnecessary. When comparing the decrease in performance 

corresponding to the addition of perceptual and cognitive loads, as the study intended, the 

revised model was accurate, on average, within 5%.  Detailed results appear in Table 

3-10. 
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Actual Performance (wpm) Predicted Performance (wpm) Participant Absent Present % Decrease Absent Present % Decrease 
Difference 

(%) 
1 30.44 15.18 50.15 33.89 13.89 59.03 8.88 
2 33.30 17.91 46.21 42.42 15.09 64.43 18.22 
3 32.11 12.27 61.80 35.81 14.20 60.35 -1.44 
4* n/a n/a n/a n/a n/a n/a n/a 
5 33.01 26.81 18.78 32.56 19.91 38.84 20.06 
6 34.41 24.08 30.03 35.11 27.28 22.30 -7.73 
7 31.63 14.69 53.55 30.97 13.37 56.83 3.28 
8 32.74 18.11 44.69 40.15 14.80 63.13 18.45 
9 35.77 13.31 62.79 42.72 15.14 64.57 1.77 
10 27.54 15.12 45.10 39.23 22.22 43.35 -1.75 
11 31.05 19.96 35.73 38.41 21.96 42.83 7.11 
12 30.47 20.34 33.23 32.75 25.83 21.11 -12.12 
        

Ave: 32.04 17.98** 43.82 36.73 18.52** 48.80 4.97** 
SD: 2.21 4.54 13.49 4.08 5.11 16.23 10.76 

Table 3-10: Results of actual and predicted performance. 
* Participant 4’s Fitts’ law data yielded unreliable results. 

** The intended comparison yields results, on average, within 5%, while direct 
comparison yields results, on average, within 3%! 

The reality that expert participants did not always yield the best performance 

illustrates an apparent discrepancy between a participant’s self-described experience and 

his or her actual performance. In one particular instance, the Primary Investigator 

observed one “expert” spending several seconds searching for the letter “e”, the most 

frequently occurring letter in the English alphabet. Although, in practice, texting 

vernacular might not employ the letter “e” as often, perhaps a micro-evaluation of a 

participant’s experience prior to the study would yield categorizations that are more 

accurate. 
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3.4.2 Learning 

Over the five repetitions, participants’ performance displayed statistically significant 

short-term learning effects (F4,40 = 72.26, p < .0001). The effect of condition order 

proved not statistically significant (F1,10 = 0.003, ns), verifying effective 

counterbalancing. Furthermore, there was no asymmetrical transfer of skill between the 

order of conditions and the conditions themselves (F1,10 = 1.51, p > .05), and none 

between the order of conditions and the repetitions (F4,40 = 0.60, ns). On average, 

participants exhibited an increase in text entry performance of 61.6% and 33.2% and 

peaked at 28.4 wpm and 15.5 wpm in the Absent Condition and the Present Condition, 

respectively. 

Condition Repetition 1 Repetition 2 Repetition 3 Repetition 4 Repetition 5
Absent 17.6 25.1 27.3 28.4 27.9 
Present 11.7 13.0 14.2 14.6 15.5 

Table 3-11: Average WPM performance for each repetition. 

In an attempt to forecast the amount of repetition required to achieve the predicted 

upper bound, Table 3-12 presents the results from employing the power law of learning 

and the combined model of Isokoski and MacKenzie (2003). However, the large number 

of trials calculated (some exceeding 1000 trials!) suggests that five sessions is perhaps 

too few from which to extrapolate long-term performance reliably. 

Condition Power Law Combined Model 
Absent  Approx. 27 Approx. 200 

Present (Expert) > 1000 > 1000 

Table 3-12: Repetitions required to achieve the predicted upper bound of performance. 
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3.5 Summary 

By augmenting the traditional text entry performance model with MHP timing values, the 

revised model more closely reflects actual usage. Because it incorporates perceptual and 

cognitive loads, the revised model predicts a decrease in expert performance from 41 to 

31 wpm for one-handed T9 input and from 62 to 44 wpm for two-handed T9 input. It also 

predicts a decrease from 64 to 45 wpm for SureType input, from 69 to 46 wpm for EQ3 

input, and from 67 to 46 wpm for EQ6 input. 

A sensitivity analysis shows the revised model to be reasonably insensitive to 

variations in its parameters. Altering expert MHP values by up to +/-50% results in 

prediction fluctuations of 5.2% or less. In addition, the evaluation results show direct 

performance predictions to be accurate within 3% on average. Participants’ performance 

during five repetitions showed significant learning effects. However, with the use of two 

separate learning models, five repetitions were not sufficient to forecast the required 

number of repetitions to reach the predicted upper bound of performance. 

With the global proliferation of mobile devices and popularity of text messaging, 

realistic performance models are important for the evaluation of new device designs and 

input techniques. This revised model should prove useful when applied to other 

ambiguous text entry methods where perceptual and cognitive processes combine with 

movement of the fingers. 
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Chapter 4  
TnToolkit: A Design and Analysis Tool for 
Ambiguous Keypads 

The popular use of mobile phones underscores the significance of mobile text entry. 

While some phones offer a miniature QWERTY keyboard or speech-to-text input, most 

provide an ambiguous keypad to allow for discrete input in a small form factor. The 

prevalence of ambiguous keypads necessitates examination of their performance 

characteristics. However, existing evaluation tools involve a time-consuming, multi-step 

process. This chapter presents TnToolkit – this author’s self-contained tool to calculate 

performance measurements for ambiguous keyboards. TnToolkit can calculate a keypad’s 

KSPC, as well as its KCME as outlined in Chapter 2. The toolkit can also calculate a 

WPM performance prediction based on the traditional Fitts’ model (MacKenzie & 

Soukoreff, 2002a; Silfverberg et al., 2000), or the revised model presented in Chapter 3 

of this thesis. TnToolkit calculates aforementioned metrics in a united, rapid, and 

streamlined manner, while providing additional functionality to the user. 

This chapter presents the motivation for and design of TnToolkit. It then describes 

the features and benefits of the toolkit and details an experiment to evaluate its 

performance relative to existing programs. This chapter concludes with a presentation of 

related work by other authors and summarizes TnToolkit’s contribution. 
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4.1 Motivation and Design 

TnToolkit is a self-contained, streamlined tool to evaluate ambiguous keypads rapidly. 

While Tegic Communications’ T9 technology stands for “Text on 9 keys” (T9), this 

toolkit can evaluate similar techniques that use an arbitrary, n, number of keys – hence 

the name TnToolkit (sometimes abbreviated TnT). 

As detailed in Chapter 3, entering text with an ambiguous keypad requires the 

user to periodically attend to the display and, if necessary, perform actions to 

disambiguate the intended word. This additional interaction places perceptual and 

cognitive load on the user for which traditional performance predictions do not account. 

Previous research by MacKenzie (2002), and MacKenzie and Soukoreff (2002a) involved 

tools to generate KSPC measurements and WPM performance predictions, respectively. 

With their permission, this toolkit extends that research. 

Using command-line tools to obtain KSPC for a keypad layout is a multi-step 

process.  The basic ingredient is a word-frequency list obtained from a corpus.  One 

constructs the keystrokes to enter each word based on the interaction technique of interest 

and appends them to the respective entry in the file. Where necessary, the keystrokes 

include those needed to choose a word in an ambiguous set.  The resulting word-

frequency-keystrokes file serves as input to an additional utility that calculates KSPC, 

weighting the keystroke counts for each word by its frequency. To streamline this 

procedure, this author created TnKSPC – a new Java program that encapsulates the process 

for an arbitrary keypad layout using a T9-like disambiguation. 
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Numerous mobile devices employ ambiguous keypads that encourage two-handed 

text entry, but the tool provided for predicting WPM performance modeled such input 

primarily on miniature QWERTY keyboards. This author’s novel Java program, TnWPM, 

models two-thumb text entry on ambiguous keypads, and incorporates Model Human 

Processor (MHP) (Card et al., 1983) components into the calculation of movement time. 

By doing so, it simulates the additional perceptual and cognitive load on the user that is 

involved when using ambiguous keypads and yields a WPM performance prediction that 

more accurately represents actual usage. 

Calculating a WPM prediction using Fitts’ law requires the size and location of 

each key used for text entry. This involves the use of an image of the keypad, from which 

to create a text-based digitization file. Each line in the file characterizes a key by a space-

delimited list of the following values: a unique identifier, an x- and y-coordinate 

representing its target point (i.e., where the user must press to activate the key), and its 

target width (i.e., the maximum radial distance from the target point at which an accurate 

press can occur) (MacKenzie & Soukoreff, 2002a). This typically necessitates the use of 

a graphics application that displays the coordinate location of the mouse pointer. The user 

then opens the image within the application and uses the mouse pointer as a probe to 

determine the coordinates of a key. However, such applications are difficult to obtain, 

time-consuming to install, or poorly suited for the task. To combat this, this author wrote 

additional Java classes that provide an innovative graphical user interface (GUI) to 

facilitate digitization tasks. Combined with TnKSPC and TnWPM, they form TnToolkit. (For 



 

further details regarding the Java classes comprising the TnT package, please refer to 

Appendix B.) 

4.2 Features and Benefits 

Those wishing to use TnToolkit can download its distributable package from 

www.cse.yorku.ca/~stevenc/TnToolkit/. In addition, Appendix A provides details on 

running TnToolkit and on its file structure. 

 
Figure 4-1: TnToolkit's main screen. The user has already digitized and selected a key. 
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Upon starting the toolkit’s GUI interface (Figure 4-1), the user can select Open 

from the File menu to load an image file (with extension gif, jpeg, jpg, or png) 

representing the keypad to be analyzed. By selecting “TnT Workspace file” as the file 

type, the user can retrieve previously saved work. The user can save work in progress at 

any time by selecting Save or Save As from the File menu. 

4.2.1 Keypad Digitization 

Once a keypad’s image is loaded, the user performs the digitization of a key by simply 

dragging across regions within the image. Simultaneously, the status bar at the bottom of 

the window displays the mouse’s current location, as well as the dimensions of the 

outline. The Key Definition dialog (Figure 4-2) then appears to facilitate mapping. The 

user indicates whether the key represents letters, or the NEXT or SPACE functionalities. 

(Note that some mobile phones label the NEXT- and SPACE-keys differently.) For letter 

keys, the user selects the checkboxes that correspond to the letters associated with that 

key. Once the user confirms the key’s attributes (by pressing OK), the checkboxes for the 

mapped letters are disabled. This prevents invalid mappings by restricting the user to 

make valid selections only. The dialog displays a default identifier for that key, but the 

user can replace it with a different, but unique, character. Finally, the user stipulates that 

one typically presses that key with the left thumb, right thumb, or that it is equally 

accessible to both thumbs. Though this thesis uses the term “thumb”, such input also 

includes other two-handed methods such as using a finger on each hand, or using two 



 

styli simultaneously. Additionally, assigning all keys to a single thumb can simulate input 

on traditional, one-handed devices. 

 
Figure 4-2: The Key Definition dialog to facilitate key-letter mapping. 

It disables previously mapped letters to prevent invalid mappings. 

Digitized keys appear as entries in the list on the right of the window. The user 

can select a key by clicking its entry in the list or by clicking within its outline. Once 

selected, the user can delete the key or edit its mappings by pressing the Delete or Edit 

button, respectively. In addition, the attributes of the selected key appear along the right 

of the window. The values x0 and y0 represent the top left point of the key’s outline, and 

the values w and h represent its width and height, respectively. The key’s target width 

(tw) is the smaller of its width and height, and the key’s target point is its center point, 

represented by cx and cy. This form of digitization is consistent with previous tools, but 

 48 



 

 49 

it can inaccurately represent an irregularly shaped key whose target point is not at its 

center. This heuristic also poorly represents keys that are especially long. For example, a 

long but narrow SPACE-key located in the middle of the keypad might benefit from the 

definition of two target points, each typifying activation by a separate thumb. The ability 

to define custom or multiple target points would result in increased metric accuracy for 

keypads with unusually shaped keys. While no tool currently implements this 

functionality, TnToolkit’s GUI would facilitate and utilize it more easily than the 

previous command-line programs. 

To ensure accurate WPM performance predictions, a key’s outline should 

represent a bounding rectangle – the smallest possible rectangle that encompasses the 

entire key. By first selecting a key’s outline, the user can the drag the top-left handle (i.e., 

a small square attached to the outline) to move it, or drag the bottom-right handle to 

resize it. To make the outlines clearly visible, the user can change their colour via the 

Color menu; the user can select a preset colour, or choose a custom one. In addition, the 

user can undo or redo changes to the workspace by selecting Undo or Redo, respectively, 

from the Edit menu. 

4.2.2 Setting Parameters 

By selecting Parameters from the Metrics menu, the user can modify model 

parameters, such as the word-frequency file, Fitts’ law coefficients, and MHP timings as 

described in Chapter 3. 



 

 
Figure 4-3: The Metric Parameters dialog. 

The user can select preset values for an expert, typical, or novice user, or set 

custom values. To discount the effect of perceptual and cognitive effort (i.e., to generate a 

traditional upper-bound expert prediction) the user can set custom values of zero for all 

timings. 
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4.2.3 Exporting Data 

TnToolkit still contains command-line programs to calculate performance metrics (i.e., 

TnKSPC and TnWPM), but these tools can be used in conjunction with the GUI interface. By 

selecting Export from the File menu, the user can export the digitization, mapping, and 

parameter data defined within the GUI. The resulting text files can then serve as input for 

TnToolkit’s command-line interface, or the previous command-line tools. This flexibility 

allows for scripting, execution via a telnet terminal, and compatibility with input files 

created for the previous command-line tools. 

4.2.4 Calculating Metrics 

When the user has mapped all letters and functions to keys, the user can calculate 

performance metrics by selecting Calculate from the Metrics menu. If the user forgot 

to perform all the required mappings, a dialog indicates which letters or functions remain. 

Otherwise, a dialog presents the progress of the calculations and allows the user to halt 

the process by pressing Cancel (Figure 4-4). 

 
Figure 4-4: The Progress dialog shows calculation progress. 

It also allows the user to halt the process. 
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Typically within several seconds, the results dialog appears. The KSPC Data panel 

(Figure 4-5) displays values for KSPC26, which represents usage of only the 26 letters of 

the English alphabet, the more practical KSPC27, which includes the space character, and 

ambiguous word statistics. It also displays a result for the KCME metric detailed in 

Chapter 2. 

 
Figure 4-5: The KSPC data calculated by TnToolkit. 
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Figure 4-6: The WPM data calculated by TnToolkit. 
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In addition to a WPM performance prediction, the WPM Data panel (Figure 4-6) 

presents thumb usage statistics, and itemizes characteristics, such as the estimated time to 

enter all the words in the word-frequency file (tCorpus), the number of characters 

necessary for such a task (nCorpus), and the average time to enter each character 

(tChar). The results dialog also contains panels that list ambiguous word sets (Figure 



 

4-7) and keystroke data (Figure 4-8) applicable to the current keypad layout. To facilitate 

further analysis or alternate presentation of this data, the user can copy the contents of 

each tabbed panel to the clipboard and paste it into other applications. 

 
Figure 4-7: Associated ambiguous word sets. 

 
Figure 4-8: Associated keystroke data. 
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4.2.5 HTML-Based Help Files 

To assist users, the TnT distribution includes HTML-based help files, which users can 

view in a mini browser from within TnToolkit (Figure 4-9). Accessed from the Help 

menu or by pressing F1, the help files guide detail how to manage files, digitize keypads, 

and calculate metrics. It also assists users by describing the metrics used and how to 

interpret their results. 

 
Figure 4-9: Packaged HTML-based help files, viewable from the Help menu. 
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4.3 Evaluation Method 

Since the expeditious modeling of existing or hypothetical designs is a central 

motivation, an empirical evaluation of TnToolkit compares its performance to existing 

tools.  The methodology and results of that evaluation is the topic of this section. 

4.3.1 Participants 

Primary Investigator recruited volunteers from the department of Computer Science and 

Engineering. Twelve students participated – ten males and two females. Ages ranged 

from 22 to 38 years, with an average age of 27 years. Though all participants opted to use 

the mouse in their right hand in the right-handed configuration, two participants were 

actually left-handed. Each participant made an appointment at his or her convenience that 

lasted approximately thirty minutes. None had any previous experience with TnToolkit. 

4.3.2 Apparatus 

The workstation for the experiment was a Pentium 4 530 (3 GHz) system running 

Windows XP. It used a 17-inch LCD monitor and a Logitech Internet Keyboard and 

Optical Mouse. The experiment took place in a quiet office environment. 

4.3.3 Design 

This experiment was a single factor design. The within-subject factor is Interface Type 

with two levels: Command-Line versus TnToolkit (GUI). The Primary Investigator 
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counterbalanced their order to offset learning interference of one condition on the other. 

He measured two dependent variables: Task Completion Time and Result Accuracy. 

4.3.4 Procedure 

Participants were given the task of calculating KSPC measurements and a WPM 

performance prediction for a given keypad image. To allow for comparisons with 

established results, this study employed the same keypad, word-frequency file, and Fitts’ 

law coefficients used by Silfverberg, MacKenzie and Korhonen (2000). Each participant 

performed the task once in each condition, described subsequently. In each case, the 

Primary Investigator presented participants with a written script to guide them through 

each condition. He explained the task and answered questions. The primary investigator 

started timing when the participant indicated readiness and stopped timing as soon as the 

participant finished writing down the aforementioned measurements. 

Command-Line Condition 

In this condition, participants used the command-line programs by MacKenzie (2002) 

and MacKenzie and Soukoreff (2002a) to calculate KSPC measurements and a WPM 

performance prediction, respectively. 

The first step was to create a keypad digitization file. For this study, keys 2-9 

represented their corresponding letters, and “N” and “_” represented the NEXT (*-key) 

and SPACE (0-key) keys, respectively, as required by the program. In addition, a key’s 

target point was its center point, and its target width was the minimum of its width and 



 

 58 

height. Participants used Microsoft Paint (and Calculator if necessary) to determine 

coordinate values, and Notepad to create the digitization file. Instead of approximating 

the center point of a key, participants determined the edge coordinates of each text entry 

key. They then calculated the center x-coordinate to be average between the left- and 

right-edge coordinates, and the center y-coordinate to be the average between the top- 

and bottom-edge coordinates. 

Participants then executed three programs at the command-line. The first program 

read the word-frequency file and produced a word-frequency-keystrokes file by replacing 

each letter in a word by the corresponding number on a telephone keypad. The second 

program appended disambiguating keystrokes in accordance with T9-like input. The third 

program yielded values for KSPC26 and KSPC27. 

Calculating a WPM performance prediction required the participants to enter the 

keypad digitization filename, the word-frequency-keystrokes filename, and the text entry 

keys’ identifiers into a model definition file. Upon saving changes to the text file, 

participants then used it as input to a command-line program that yielded a WPM 

performance prediction. 

TnToolkit Condition 

In this condition, participants launched TnToolkit and opened the image of the keypad. 

The script instructed them to define the letter keys (keys 2-9), the NEXT-key (*-key), and 

the SPACE-key (0-key), assigning all of them to the same thumb. It also informed 

participants of the ability to edit a key. After defining the required keys, the participants 



 

 59 

selected Calculate from the Metrics menu to calculate and display the KSPC 

measurements and WPM performance prediction. 

4.4 Results and Discussion 

All participants appreciated the convenience afforded by TnToolkit. Some believed its 

use would reduce errors and make any errors that did occur easier to identify and correct. 

However, one participant preferred the control permitted by the command-line programs, 

and suggested the use of more handles in the toolkit with which to move and resize a 

key’s outline. 

4.4.1 Task Completion Time 

As shown in Table 4-1, Interface Type had a significant effect on Task Completion Time 

(F1,10 = 25.88, p < .0005). On average, Task Completion Time was 69% quicker using 

TnToolkit than using the command-line programs! 
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Task Completion Time (mm:ss) Participant Command-Line TnToolkit % Decrease 
1 24:56 06:11 75.20 
2 12:10 03:23 72.19 
3 12:50 04:38 63.90 
4 43:29 03:40 91.57 
5 17:39 05:25 69.31 
6 09:37 05:56 38.30 
7 11:57 04:25 63.04 
8 20:09 05:12 74.19 
9 13:25 04:18 67.95 
10 26:50 05:08 80.87 
11 18:09 05:25 70.16 
12 32:16 10:49 66.48 
        

Ave: 20:17 05:23 69.43 
SD: 09:37 01:50 12.03 

Table 4-1: The results for Task Completion Time. 
Green highlights indicate the faster condition. 

In addition, statistical analysis confirms effective counterbalancing (F1,10 = 0.044, 

ns) and that no asymmetric transfer of skill occurred between the two conditions 

(F1,10 = 0.013, ns). 

4.4.2 Result Accuracy 

Because both the key-letter mapping and the word-frequency file remained the same 

throughout the experiment, all participants obtained the same KSPC measurements in 

both conditions. Unpublished statistics by MacKenzie verify the KSPC26 value of 1.0079 

and the KSPC27 value of 1.0064. (MacKenzie's published results (2002) differ by less 

than 0.08%, but were calculated using a different word-frequency file as input.) 
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The Fitts’ law model underlying the WPM prediction requires the user to provide 

the bounds (i.e., size and location) of each key used for text entry. Shadows in the 

keypad’s image can make the determination of a key’s bounds subjective, resulting in 

slight variations in predictions. Table 4-2 presents the WPM predictions calculated by 

each participant in each condition. It also presents the percent difference from the 

accepted value of 40.6 wpm for this keypad calculated by Silfverberg, MacKenzie and 

Korhonen (2000). Again, statistical analysis confirms effective counterbalancing 

(F1,10 = 1.32, p > .05) and that no asymmetric transfer of skill occurred between the two 

conditions (F1,10 = 3.19, p > .05). 

Command-Line TnToolkit Participant Prediction % Difference Prediction % Difference 
1 45.5 12.07 39.9 1.72 
2 41.2 1.48 40.3 0.74 
3 40.5 0.25 41.2 1.48 
4 38.6 4.93 41.6 2.46 
5 38.5 5.17 41.1 1.23 
6 41.1 1.23 40.1 1.23 
7 41.9 3.20 41.6 2.46 
8 41.2 1.48 41.6 2.46 
9 41.3 1.72 39.5 2.71 
10 40.9 0.74 39.7 2.22 
11 41.1 1.23 40.5 0.25 
12 40.8 0.49 41.1 1.23 

     
Ave: 41.1 2.83 40.7 1.68 
SD: 1.7 3.33 0.8 0.78 

Table 4-2: The WPM predictions and their accuracy. The established prediction is 
40.6 wpm (Silfverberg et al., 2000). Green highlights indicate the more accurate 
condition, while yellow highlights indicate both conditions are equally accurate. 
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Seven of twelve participants achieved the same or better accuracy with TnToolkit 

than with the command-line programs. Furthermore, all participants attained a prediction 

within 3% of the accepted value by using the toolkit. However, such differences were not 

statistically significant (F1,10 = 1.73, p > 0.05). While this indicates that using the toolkit 

does not necessarily reveal more accurate results than the command-line programs, it also 

suggests that using TnToolkit is just as accurate as the much slower alternative. 

4.5 Related Work 

Composed of goals, operators, methods, and selection rules, the GOMS model proposed 

by Card, Moran, and Newell is the standard for predicting performance and analyzing 

interaction between humans and computer systems (Tollinger et al., 2005). However, in 

practice, designers rarely use GOMS modeling, as the overhead required to produce such 

models often eclipses their benefit (Tollinger et al., 2005). 

Tollinger et al. combined GOMS with a model of human cognitive architecture to 

produce X-PRT, an environment to support interface design and performance evaluation 

(Tollinger et al., 2005). In general, X-PRT simplifies the process by allowing users to 

create large systems by combining smaller components that are predefined, user-defined, 

or imported. For example, they define interface screens by using drawing tools, or by 

importing an existing image of the screen and outlining the interactive widgets. Users 

employ primitive operations to define tasks, which they can then combine and structure 

hierarchically. And with the use of a slider, they can define the simulated user’s skill. 
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This in turn selects the corresponding built-in cognitive model. Other cognitive 

architecture parameters can also be imported. 

Like X-PRT, TnToolkit is the amalgamation of multiple modeling and evaluation 

tools, it allows users to import existing images to aid interface definition, and it can 

simulate users of various skill levels. However, while X-PRT is applicable to a broad 

spectrum of interface types, TnToolkit specializes on interfaces for mobile text entry. 

Consequently, it is more straightforward and suitable for that task. 

An evaluation tool by Sandnes is also specific to text entry. However, unlike 

Tollinger et al., Sandnes employs a methodology other than GOMS and models text entry 

techniques using finite state automata (Sandnes, 2005). Traversal algorithms can then 

evaluate the resulting directed graphs. Specifically, they can calculate values for KSPC 

and Sandnes’ own mean error recovery distance (MERD) metric. While such values can 

be determined early in a technique’s design, the lack of spatial details precludes 

prediction of WPM performance. In contrast, TnToolkit calculates both WPM and KSPC 

metrics. 

4.6 Summary 

With the global proliferation of mobile devices and popularity of text messaging, readily 

obtainable performance measurements are important for the evaluation of new device 

designs and input techniques. TnToolkit rapidly and accurately analyzes the performance 

characteristics of ambiguous keypad layouts. It streamlines performing key-letter 

assignments and simplifies digitizing ambiguous keypads. Furthermore, it allows users to 
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visualize and easily edit the keypad digitization, save work in progress, and share data 

with other applications. 

The conducted experiment revealed that use of TnToolkit resulted in a 69% 

decrease in task completion time. While a reduction in task completion time is a common 

result of adding a GUI, such an immense improvement without compromised accuracy is 

very much a benefit. 

By conveniently facilitating the performance evaluation of ambiguous keypad 

designs, TnToolkit facilitates analyses of existing devices as well as new prototypes. 
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Chapter 5  
Conclusion 

With a multitude of functionality, mobile phones are both ubiquitous communication 

tools and versatile entertainment units. To take full advantage of their potential, text entry 

on such devices is paramount. Furthermore, input techniques employing ambiguous 

keypads seem the methods of choice, as they provide the needed functionality without 

sacrificing mobility. 

Presented in Chapter 4 of this thesis, TnToolkit facilitates the evaluation of 

existing techniques and the design of new ones. In addition to allowing users to save, 

export, and share keypad data and metric results, TnToolkit simplifies keypad digitization 

and includes numerous performance and efficiency metrics. In addition to traditional 

metrics, it also incorporates the research presented in Chapter 2 and Chapter 3 of this 

thesis. The new KCME efficiency metric in Chapter 2 combines a technique’s KSPC 

value with the number of keys it employs for text entry. By doing so, it yields a value that 

represents the technique’s balance between QWERTY practicality and device portability. 

To evaluate a technique’s predicted performance, the model in Chapter 3 uses MHP 

timing values to account for time spent on perceptual and cognitive tasks. Ambiguous 

text entry requires the user to expend perceptual and cognitive effort to disambiguate 

entry and ensure that the inputted word is the desired one. By incorporating additional 
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operators, the author’s revised model accounts for this and more closely resembles actual 

use. 

5.1 Future Work 

While the author of this thesis has brought to fruition the concepts presented herein, 

development is a continuous process. The evaluations detailed in Chapter 3 and Chapter 4 

helped to assess the model and tool presented in their respective chapters. They also 

provided the forum for improvements to those endeavours. The subsequent subsections 

describe such enhancements. 

5.1.1 Efficiency Metric 

To avoid a bias towards an input technique’s KSPC27 value or the number of text entry 

keys it requires (i.e., numKeys), the KCME metric gives equal weight to each measure. 

However, Table 2-1 indicates that numKeys values occupy a much larger range than 

KSPC27 values. Consequently, numKeys unintentionally dominates the metric’s 

calculation. Future development of this metric could investigate including coefficients to 

attenuate the contribution of numKeys, intensify the effect of KSPC27, or both. 

5.1.2 Performance Model 

While the pre-study questionnaire gathered a participant’s self-described telephone 

keypad and text messaging experience, this data was naturally subjective. Its aim was to 

categorize participants based on their familiarity with the letter-key mapping employed in 
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the study. To that end, future evaluations of a similar nature could administer a brief and 

simple pre-test: the Primary Investigator would present each participant with an 

illustration of the keypad used (void of markings), and instruct him or her to label the 

keys appropriately. Thus, the Primary Investigator could categorize participants based on 

a quantitative analysis of their familiarity with the technique’s layout. 

Instead of simulating the mobile phone interface on a workstation, the Primary 

Investigator could conduct the evaluation on an actual mobile phone. The Java 2 Mobile 

Edition (J2ME) platform enables a subset of desktop Java (J2SE) functionality on devices 

with limited computational resources (i.e., mobile devices). While many contemporary 

mobile phones implement a J2ME runtime environment, most have limited support. For 

example, some cannot support float or double data types, precluding calculation of 

Fitts’ law coefficients; and the majority cannot write to persistent storage, ruling out 

logging of performance details. However, mid- to high-end phones now implement 

floating-point calculations and allow J2ME applications to read from and write to internal 

flash memory, thus alleviating the aforementioned issues. 

Though hardware now makes running a model evaluation feasible, porting the 

existing program to the J2ME platform would not be easy. J2ME requires different 

development kits and tools (e.g., J2ME emulator for the desktop environment) than J2SE. 

It also provides different packages and classes. Some required classes are missing (e.g., 

StringTokenizer, used for parsing input files), so new classes must implement the 

missing functionality. However, the most significant alteration would be to the GUI. 
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Because mobile phones do not provide the same input methods as desktop computers 

(e.g., no mouse), J2ME provides classes to implement GUI components that are different 

than, and completely incompatible with, J2SE. Program start-up, event handling, and 

program termination are also very dissimilar, and would require particular management. 

5.1.3 TnToolkit 

While TnToolkit allows users to digitize a keypad simply by using an image of it, the 

appearance of the image can affect the accuracy and experience of digitization. 

Especially small images can obscure a key’s edge, and particularly large images might 

require a great deal of scrolling. To combat this, future versions of TnToolkit could 

provide zooming functionality. In addition to scaling the image, determination of a key’s 

size and location must also compensate for the image’s new size. Failure to do so would 

detrimentally misrepresent the relative size and distance measure required by the Fitts-

based performance model, and yield in drastically accurate predictions. By multiplying 

coordinates by the scaling factor, digitization results would consistently reflect the 

original dimensions of the keypad’s image. This would also allow the user to make 

magnification changes at various times during digitization without corrupting the results. 

As suggested by a study participant, the addition of more move and resize handles 

would allow greater control of digitization. However, currently, move and resize handles 

appear as filled squares. Consequently, they sometimes mask the corners and edges of a 

key, making accurate digitization difficult; increasing their number would further obscure 

the user’s view of the digitized key. Implementing an increased number of outlined 
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handles would address both issues. By drawing handles that appear as outlined squares 

(i.e., with no fill colour), additional move and resize handles would provide greater 

digitization control without hindering the user’s view of the keypad. 

Sometimes, keypads employ especially large or irregularly shaped keys. When 

digitizing a key, TnToolkit assigns it a single target point at the center of the key. While 

this practice is sufficient for traditionally uniform keys, it does not accurately reflect 

peculiar ones. Future versions of TnToolkit could remedy this by assigning a single target 

point at the center of a key by default, and allowing users to edit its location and add 

supplementary ones. This would reveal more accurate performance predictions for 

keypads with large or irregularly shaped keys. 
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A.1 

Appendix A  
Running TnToolkit 

TnToolkit is available from www.cse.yorku.ca/~stevenc/TnToolkit/. It requires an unzip 

utility (e.g., 7-zip, WinZip, etc.) to extract it, and the Java Runtime Environment (version 

1.5.0 or later) to run it. 

File Structure 

Extracting TnToolkit yields the following files and directories: 

corpora: Word-frequency representations of corpora appear in this directory. 

doc: Javadoc files associated with TnToolkit are in this directory. 

help: Users can access TnToolkit’s HTML-based help files in this directory. 

keyboards: This directory contains default images of mobile phone keypads. 

License.txt: Before using TnToolkit, users should read this User License. 

TnT.cmd: This start-up script is for the Windows NT operating system or later. 

TnT.ico: In Windows, this icon file can be associated with a shortcut to the 

TnToolkit start-up script. 

tnt.jar: This archive contains the class files and resources required by TnToolkit. 

TnT.sh: This start-up script is for Linux/Unix operating systems. 
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A.2 

A.3 

A.3.1 

Running the GUI 

To launch TnToolkit’s GUI, simply run the file TnT.cmd (for Windows) or TnT.sh (for 

Linux/Unix). Alternatively, one can enter the following at a command prompt: 

PROMPT>java –jar TnT.jar 

Using the Command-Line Tools 

Though users can realize the most benefit from TnToolkit by using its GUI, its 

command-line tools allow it to function in command-line environments. The subsequent 

subsections detail how to use these tools. 

TnKSPC 

This tool takes a letter-key mapping and a word-frequency corpus representation and 

calculates KSPC-related metrics. Invoking it with insufficient parameters displays the 

following usage message: 

PROMPT>java TnKSPC mapping wordfreq [-e] [-s] [-a] [-k] 
 
 where: 
  mapping  = file containing letter-key mapping 
  wordfreq = file containing word and frequency values 
  -e = outputs KCME value 
  -s = outputs summary data 
  -a = outputs ambiguous word sets 
  -k = outputs word-freq-keystroke data 
 
Default output is KSPC26 and KSPC27 values only. 
 
See JavaDoc for more information. 



 

 72 

As indicated, this tool takes two file paths as input. The first file represents the 

letter-key mapping of the keypad under analysis. This file must contain two lines. The 

first lines must contain all the letters of the alphabet pertaining to the target language. If 

applicable, the letters must be in lower case. The second line should contain each key’s 

identifying character. These characters must be ordered (and repeated if necessary) such 

that each identifying character appears in the same column as the letter(s) mapped to it. 

(The user can also export this data from the TnToolkit GUI.) The following example 

represents a standard telephone keypad: 

abcdefghijklmnopqrstuvwxyz 
22233344455566677778889999 

The second file provides a word-frequency representation of a corpus. (For tools 

to assist in the creation of such a file, refer to work by MacKenzie and Soukoreff (2003).) 

Each line must be a white space delimited list of a word in lower case and its frequency. 

For example: 

... 
able    26890 
bald    569 
cake    2256 
calf    561 
... 

When a user specifies the –k option, this tool outputs the contents of the word-

frequency file with each word’s required keystrokes appended to its entry. By redirecting 

this output to a text file, a user can create a word-frequency-keystrokes file, which the 

TnWPM tool requires. 



 

 73 

A.3.2 TnWPM 

This tool takes a model definition and yields a WPM performance prediction based on 

Fitts’ law. Invoking it with insufficient parameters displays the following usage message: 

PROMPT>java TnWPM model.txt [-b] [-d] [-m] [-t] 
 
 where: 
  model.txt = a model definition file 
  -b = breakdown of prediction 
  -d = debug information 
  -m = model components and parameters 
  -t = thumb usage statistics 
 
Default output is WPM prediction only. 
 
See JavaDoc for more information. 

To minimize the number of parameters entered on the command-line, this tool 

reads all model parameters from a separate model definition. This text file contains 

thumb assignment, Fitts’ law coefficients, and MHP timing values. The following is a 

sample of such a file (comment lines begin with '#'): 

# word-frequency-keystrokes file 
d2-ST_ksfreq.txt 
# keyboard definition file 
7100t_digitization_v2.txt 
# left thumb letter assignments (leave blank if none) 
Q12A45Z78N 
# right thumb letter assignments (leave blank if none) 
23P56L89N 
# prefer left thumb (when both are equally applicable)? 
false 
# Fitts' law coefficients... 
# left thumb intercept 
176 
# left thumb slope 
64.0 
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# right thumb intercept 
176 
# right thumb slope 
64.0 
# tMIN (minimum inter-key stroke time using opposite thumbs) 
0.088 
# Space key policy... 
#     'Alternate' = alternate thumb for space at end of word 
#     'Left' = always left thumb 
#     'Right' = always right thumb 
Alternate 
# Values for perceptual, cognitive and motor processes... 
# Eye movement time (t sub E) in seconds 
0.070 
# Perceptual processor cycle time (t sub P) in seconds 
0.050 
# Motor processor cycle time (t sub M) in seconds 
0.030 
# Cognitive processor cycle time (t sub C) in seconds 
0.025 
# Time in seconds to determine if two words are the same 
0.036 
# *** end *** 

However, the two most complex parameters in the definition are the paths to the 

word-frequency-keystrokes file and the keypad digitization file. Each line in the word-

frequency-keystrokes file lists a word in the corpus, its frequency within the corpus, and 

the keystrokes required to enter it. Though a user can manually create such a file, the 

TnKSPC tool can also generate it. The following is an excerpt from such a file: 

... 
able 26890 2253S 
cake 2256 2253NS 
bald 569 2253NNS 
calf 561 2253NNNS 
... 
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Each line of a keypad digitization (a.k.a. definition) file defines the characteristics 

of particular key used for text entry. The token on a line is a unique character identifying 

the key. Key identifiers must correspond to those used to encode the keystrokes in the 

word-frequency-keystroke file. The next token is a string composed of the letters mapped 

to that key. Though not strictly required to calculate a performance prediction, this string 

provides means for error checking within the TnToolkit GUI and is required for 

compatibility reasons. It also allows the digitization file to be easily comprehendible by 

humans. The next three tokens represent the key’s x-coordinate, y-coordinate, and target 

width, respectively. Because this tool determines the distance between two keys using the 

Pythagorean Theorem, neither the location of the coordinate grid’s origin nor the unit of 

measurement is significant. Typically, “S” and “N” identify the SPACE- and NEXT-

keys, respectively and other key identifiers are all lowercase. (The user can also export a 

keypad’s digitization data from the TnToolkit GUI.) The following represents a sample 

keypad: 

S S 13.25 27 6 
2 abc 13.25 0 6 
3 def 26.5 0 6 
4 ghi 0 9 6 
5 jkl 13.25 9 6 
6 mno 26.5 9 6 
7 pqrs 0 18 6 
8 tuv 13.25 18 6 
9 wxyz 26.5 18 6 
N N 25.5 -9 6 



 

Appendix B  
Primary TnToolkit Classes 

This appendix details the primary classes that comprise TnToolkit and their interaction 

with other classes in the TnT package. (For simplicity, it omits some subordinate classes.) 

To access individual classes in the TnT package, simply add its path to the system’s 

CLASSPATH variable. For further information on a particular class, including inherited 

features, method details, and version information, please refer to the packaged Javadoc 

documentation. To give an overview of TnToolkit’s design, Figure B-5-1 depicts its 

UML class diagram. 

 
Figure B-5-1: A UML class diagram illustrating the design of TnToolkit. 

For simplicity, it omits some subordinate classes. 
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B.1 

B.1.1 

B.1.2 

B.2 

B.2.1 

tnt.* 

Classes within all subpackages of the TnToolkit project typically use the upper-level 

classes in this section. 

Constants 

This class defines constant values for the entire project. Such values include defaults and 

version information  

FormatException 

When reading formatted text files (e.g., word-frequency files, saved workspace files, 

etc.), methods that encounter discrepancies between the actual and required format 

should throw an instance of this class. Furthermore, the exception’s message should 

describe the specific cause or location of the format error. 

tnt.metric.* 

This package provides classes for the calculation of performance metrics, such as KSPC 

and WPM. It is also the source for TnToolkit’s command-line tools: tnt.metric.TnKSPC 

and tnt.metric.TnWPM. 

KeyButton 

Instances of this class represent the digitized keys/buttons on the ambiguous keypad. At 

least five arguments define each key: a character used to identify this key when listing 
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B.2.2 

B.2.3 

B.2.4 

keystrokes, a String representing the character(s) on the key, the key's center 

x-coordinate, the key's center y-coordinate, and the key's target width (i.e., the minimum 

of its width and height). 

ModelDefinition 

This class encapsulates values required for a Fitts’ law performance prediction model. 

Specifically, this class represents additional objects defining a model of text entry for 

processing by TnWPM. These values include a keypad digitization and a word-frequency-

keystrokes representation of a corpus. All values can be loaded from a model definition 

file or set individually. 

TnKSPC 

This is one of TnToolkit’s command-line tools. Given a letter-key mapping and a word-

frequency representation of a corpus, this class calculates values for KSPC and KCME. It 

can also gather ambiguous word statistics, collate ambiguous word sets, and generate the 

word-frequency-keystrokes data required by TnWPM. 

TnMetric 

This interface outlines the methods required by all classes that calculate metrics within 

TnToolkit. Specifically, it ensures that the calling class can start, monitor, and stop the 

calculation of any metric. 
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B.2.5 

B.2.6 

B.3 

B.3.1 

TnWPM 

This is one of TnToolkit’s command-line tools. Given a model definition (as either a text 

file or an instance of ModelDefninition), this class calculates a WPM performance 

prediction based on Fitts’ law. In addition, it can also collect performance and thumb 

usage statistics. 

WordFreqKs 

This class encapsulates a word, its frequency in the corpus and the keystrokes required to 

type it. It also implements a method to sort such objects in ascending order according to 

keystrokes. It then sorts objects with equal keystrokes in descending order of frequency, 

then in ascending order by word. 

tnt.gui.* 

This package provides classes that define and implement the characteristics of 

TnToolkit’s GUI. To launch an instance of the GUI, run tnt.gui.TnTApp. 

MetricsCalculation 

This class calculates KSPC- and WPM-related metrics. However, three inner classes 

provide this functionality. First, an instance of ProgressDialog presents the user with a 

bar representing the progress of calculation and a “Cancel” button to halt further progress 

(Figure 4-4). Then, an instance of CalculationThread starts as a separate thread to 
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B.3.2 

B.3.3 

B.3.4 

calculate the metrics asynchronously. Meanwhile, an instance of ProgressThread starts 

an asynchronous timer that periodically updates the progress bar. 

The responsibilities of MetricsCalculation are to instantiate and initialize 

instances of the aforementioned inner classes, facilitate communication between those 

classes, and to provide access to the completed TnKSPC and TnWPM objects that store the 

metrics’ results. 

HelpFrame 

This class encapsulates the mini-browser that displays and navigates TnToolkit’s HTML-

based help files (Figure 4-9). It provides, back, forward, and home navigation. 

KeyLetterDialog 

This class encapsulates the digitization dialog (Figure 4-2). It allows users to map letters 

to a key, but also restricts their input to valid ones. 

MetricsOutputDialog 

An instance of this class presents the values calculated by TnKSPC and TnWPM in tabbed 

panes (Figure 4-5 through Figure 4-8 inclusive). Each pane is an instance of 

OutputPanel, which facilitates the copying of its contents into other applications via the 

system’s clipboard. 
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B.3.5 

B.3.6 

ParametersDialog 

This class encapsulates the parameters dialog (Figure 4-3). It allows users to easily 

specify parameters for the various metrics. 

ScrollablePaintPanel 

This class encapsulates a scrollable panel that displays a background image and on top of 

which, allows the user to draw temporary rectangular outlines. These outlines appear 

during mouse drags and serve to illustrate the size and position of a key that is in the 

process of digitization. Once the user releases the mouse button, the outline disappears. 

Instances of this class share a list model with the instance of TnTFrame that 

instantiated it. The elements of this list represent a digitized key. After drawing the 

background image of the keypad under examination, this class draws persistent outlines 

around each key in the list using the user-specified colour. If the user selected a digitized 

key, this class also draws move and resize handles around the appropriate outline. This 

process repeats during every redraw of the panel. 

This panel captures all mouse actions and delegates responses to the appropriate 

method(s). If the user clicks on the panel, this class determines if it occurred within the 

outline of a digitized key. If so, it signals that the user selected that key, and updates itself 

and the list accordingly. This panel also updates itself to reflect changes to the list. 
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B.3.7 

B.3.8 

B.3.9 

B.3.10 

TnTApp 

This class initializes the GUI and displays it in the center of the screen. The actual GUI is 

an instance of TnTImp. 

TnTFrame 

This abstract class instantiates and arranges the component of the GUI, but defines very 

little of its associated business logic. This separation of responsibilities assists code 

maintenance and facilitates future development. 

TnTImp 

This class implements the majority of the business logic related to the TnToolkit's GUI. 

This separation of responsibilities assists code maintenance and facilitates future 

development. 

Workspace 

Instances of this serializable class encapsulate a user’s workspace (i.e., work-in-progress) 

to simplify the writing to and reading from persistent storage. Specifically, it stores the 

user’s colour selection, the path to the keypad’s image file, the digitized keys, and the 

current values in the parameters dialog. 
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